作业帮 > 数学 > 作业

求证.(tanx+tany)/(tanx-tany)=(sinx+siny)/(si

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 17:02:53
求证.(tanx+tany)/(tanx-tany)=(sinx+siny)/(si
求证.(tanx+tany)/(tanx-tany)=(sinx+siny)/(sinx-siny)
求证.(tanx+tany)/(tanx-tany)=(sinx+siny)/(si
1、sin(x+y)/sin(x-y)
=(sinxcosy+cosxsiny)/(sinxcosy-cosxsiny) 上下都除以cosxcosy
=(tanx+tany)/(tanx-tany)
2、(tanx+tany)/(tanx-tany)
=(sinx/cosx+siny/cosy)/(sinx/cosx-siny/cosy)
=[(sinxcosy+cosxsiny)/cosxcosy]/[(sinxcosy-cosxsiny)/cosxcosy]
=(sinxcosy+cosxsiny)/(sinxcosy-cosxsiny)
=sin(x+y)/sin(x-y).