x,y,z在0°到90°,且x+y+z=90°,求tanx,tany,tanz的最大值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 19:28:57
x,y,z在0°到90°,且x+y+z=90°,求tanx,tany,tanz的最大值
Tan[x] Tan[y] Tan[z]
= Tan[x] Tan[y] Tan[90°- (x+y)]
=(Tan[x] Tan[y])/Tan[x + y]
对x求偏导得
Cos[2 x + y] Csc[x + y]^2 Sec[x]^2 Sin[y] Tan[y]
令其偏导为0得,
Cos[2 x + y]=0,于是2x+y=90°,
类似地对y求偏导令其偏导为0得,2y+x=90°,
于是x=y=30°,z=90°-x-y=30°,
于是Tan[x] Tan[y] Tan[z]的极值为
Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245
比较一下,Tan[15°] Tan[30°] Tan[45°]=(2 - Sqrt[3])/Sqrt[3]≈0.154701
于是知道Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245应该是极大值,
再考虑边界,边界上的x,y,z中必有一个为0,
于是Tan[x] Tan[y] Tan[z]=0,
极大值大于边界值,所以,极大值即为最大值.
即当x=y=30°,z=30°,时,可取最大值,最大值为1/(3 Sqrt[3])≈0.19245
= Tan[x] Tan[y] Tan[90°- (x+y)]
=(Tan[x] Tan[y])/Tan[x + y]
对x求偏导得
Cos[2 x + y] Csc[x + y]^2 Sec[x]^2 Sin[y] Tan[y]
令其偏导为0得,
Cos[2 x + y]=0,于是2x+y=90°,
类似地对y求偏导令其偏导为0得,2y+x=90°,
于是x=y=30°,z=90°-x-y=30°,
于是Tan[x] Tan[y] Tan[z]的极值为
Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245
比较一下,Tan[15°] Tan[30°] Tan[45°]=(2 - Sqrt[3])/Sqrt[3]≈0.154701
于是知道Tan[30°] Tan[30°] Tan[30°]=1/(3 Sqrt[3])≈0.19245应该是极大值,
再考虑边界,边界上的x,y,z中必有一个为0,
于是Tan[x] Tan[y] Tan[z]=0,
极大值大于边界值,所以,极大值即为最大值.
即当x=y=30°,z=30°,时,可取最大值,最大值为1/(3 Sqrt[3])≈0.19245
已知x,y,z都是锐角,sin^2x+sin^2y+sin^2z=1,求tanx*tany*tanz的最值
若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式
x+y+z=1 求xyz/(x+y)(y+z)(z+x)的最大值
已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.
若xy-z不等于0,且(y+x)/x=(z+x)/y=(y+x)/z,求[(y+z)(z+x)(x+y)]/xyz的值?
已知x,y,z大于等于0且x+y+z=1,求根号x+根号y+根号z的最大值和最小值
已知x,y,z大于等于0,且x+y+z=1,求根号x+根号y+根号z的最大值与最小值
若xyz不等于0,且满足(y+z)/x=(x+z)/y=(x+y)/z,求(y+z)(x+z)(x+y)/xyz的值
若xyz不等于0,且(y+z)/x=(z+x)/y=(x+y)/z,求(y+z)(z+x)(x+y)/xyz的值?
已知x,y,z是正整数,且x大于y,x+y=6,z-y=2000,求x+y+z的最大值,要求:分类讨论
已知tanx=-3/4,且tan(x+y)=1,求tany的值
已知x+y-z/z=x-y+z/y=-x+y+z/x,且xyz不等于0,求分式[(x+y)(x+z)(y+z)]/xyz