已知数列{an}中,对任意n∈N*都有an+2=an+1-an,若该数列前63项和为4000,前125项和为1000,则
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:19:43
已知数列{an}中,对任意n∈N*都有an+2=an+1-an,若该数列前63项和为4000,前125项和为1000,则该数列前2011项和为( )
A. 0
B. 1000
C. 3000
D. 5000
A. 0
B. 1000
C. 3000
D. 5000
由题意知:
∵an+2=an+1-an 令n=n+1得
∴an+3=an+2-an+=an+1-an-an+1=-an
再令n=n+3得:an+6=-an+3=an
所以 T=6
又∵前6项分别为:a1,a2,a2-a1,-a1,-a2,a1-a2
∴每6项和为0,即s6=0
又∵s63=a1+a2+a3=2a2=4000
∴a2=2000
又∵s125=a1+a2+a3+a4+a5=a2-a1=1000
∴a1=1000
又∵s2011=a1
所以s2011=1000
故选B.
∵an+2=an+1-an 令n=n+1得
∴an+3=an+2-an+=an+1-an-an+1=-an
再令n=n+3得:an+6=-an+3=an
所以 T=6
又∵前6项分别为:a1,a2,a2-a1,-a1,-a2,a1-a2
∴每6项和为0,即s6=0
又∵s63=a1+a2+a3=2a2=4000
∴a2=2000
又∵s125=a1+a2+a3+a4+a5=a2-a1=1000
∴a1=1000
又∵s2011=a1
所以s2011=1000
故选B.
设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.
已知数列{an}的前n项和为Sn,且对任意正整数n都有an是n与Sn的等差中项.
数列an中,an=1/(根号(n+2)+根号n),则an的前n项和为
已知等差数列an的首项a1为a,设数列的前n项和为Sn,且对任意正整数n都有a2n/an=4n-1/2n-1,求数列的通
若数列{An}中,a1=1,前n项和为Sn,对任意的n>=2…
已知数列an前n项和为sn=2an+1,则a3等于
已知数列an的前n项和为sn,且对任意正整数n都有an是n与sn的等差中项(1)bn=an+1,求bn
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.
已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列
已知数列an的前n项的和为sn,且对任意n∈N有an+sn=n,设bn=an-1,求证数列bn是等比数列
设数列{an}的前n项和为Sn,对任意n∈N*满足2Sn=an(an+1),且an≠0 (1)求数列an的通项公式
数列{an}前n项和为Sn,对一切正整数n都有Sn=n+(1/2)an,求an,Sn