已知f(x)=8+2x-x²,若g(x)=f(2-x²),则g(x)的单调增区间为( ),单调减区间
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 23:52:58
已知f(x)=8+2x-x²,若g(x)=f(2-x²),则g(x)的单调增区间为( ),单调减区间为( )
要用复合函数解.
要用复合函数解.
g(x)单调递增区间为:[-1,1];单调递减区间为:(-∞,-1),或(1,+∞)
f(x)=8+2x-x²
f(2-x²)=8+2(2-x²)- (2-x²)²
=8+4-2x²-(4-4x²+x^4)
=-x^4+2x² +8
=g(x)
若令x²=t,(t≥0)
则g(x)= -t² + 2t +8
=-(t²-2t) +8
=-(t-1)² + 9
显然,关于t的一元二次函数是一个开口向下的抛物线,
其对称轴为t=-1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数;
当t≥1时,f(t)为单调递减函数.
因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时,g(x)单调递增函数;
同理,t≥1时,即x² ≥1时,即x≤-1,或x ≥1时,g(x)为单调递减函数.
再问: 谢谢你的解答。不过正确答案单调增区间是(-∞,-1)和(0,1) 单调减区间(1.+∞)和(-1,0)
再答: 上面有一步错了 其对称轴为t=1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数; 当t≥1时,f(t)为单调递减函数。 因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时, 又因为x^2在x>0处单调递增,x0处单调递增,x
f(x)=8+2x-x²
f(2-x²)=8+2(2-x²)- (2-x²)²
=8+4-2x²-(4-4x²+x^4)
=-x^4+2x² +8
=g(x)
若令x²=t,(t≥0)
则g(x)= -t² + 2t +8
=-(t²-2t) +8
=-(t-1)² + 9
显然,关于t的一元二次函数是一个开口向下的抛物线,
其对称轴为t=-1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数;
当t≥1时,f(t)为单调递减函数.
因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时,g(x)单调递增函数;
同理,t≥1时,即x² ≥1时,即x≤-1,或x ≥1时,g(x)为单调递减函数.
再问: 谢谢你的解答。不过正确答案单调增区间是(-∞,-1)和(0,1) 单调减区间(1.+∞)和(-1,0)
再答: 上面有一步错了 其对称轴为t=1,根据其函数图像可得,当t≤1时,f(t)为单调递增函数; 当t≥1时,f(t)为单调递减函数。 因为,t=x² ≥0,所以,0≤t≤1时,即0≤x² ≤1时,即-1≤x ≤1时, 又因为x^2在x>0处单调递增,x0处单调递增,x
已知函数f(x)=8+2x-X²,g(x)=f(2-X²),试求出g(x)的单调区间!
已知f(x)=8+2x-x^2,若g(x)=f(2-x^2) 求g(x)的单调区间.
已知f(x)=xInx,g(x)=x³++ax²-x+2(1)如果函数g(x)的单调递减区间为(-1
已知函数f(X)=8+2X-X平方,g(X)=f(2-X平方),试求g(X)单调区间.
已知函数f(X)=8+2X-X平方,g(X)=f(2-X平方),试求g(X)单调区间
已知函数g(x)=x²-2x(x∈[2,4])求g(x)的单调区间
函数f(x)=2x²-3|x|的单调减区间为?
已知f(x)=8+2x-x2,如果g(x)=f(2-x2),试求g(x)的单调区间
已知f(x)=8+2x-x2,g(x)=f(2-x2),试求g(x)的单调区间.
函数f(x)=x²+2x的单调递增区间为?值域为?
函数f(x)=(x^2+x+1)e^x的单调减区间为
已知f(x)=x^2-8x+7,g(x)=x+4/x,则复合函数f(g(x))的单调递增区间是