图1 图2图3是分别由两个具有公共顶点A的正三角形正四边形正五边形组成的图形一个多边形顶点B‘在另一个的边BC上
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:07:42
图1 图2图3是分别由两个具有公共顶点A的正三角形正四边形正五边形组成的图形一个多边形顶点B‘在另一个的边BC上
图1中角B'CC'=
图2中求角B'CC'的度数
图三中角B'CC'=
图1中角B'CC'=
图2中求角B'CC'的度数
图三中角B'CC'=
⑴正三角形中,∠B'CC'=120°
⑵正四边形中,∠B'CC'=135°
⑶正五边形中,∠B'CC'=144°
⑷当满足条件的图形为正N边形时,猜想∠BCC'=(N-1)*180°/N
(前三个是最后一个的特殊情形,所以我只给出最后一个的证明)
⑷的证明(几乎写出了所有步骤,实际上有些步骤可以不写的):
过C'作CD的平行线交BC的延长线于E
因为多边形ABCD...和多边形AB'C'D'...是正N边形
所以∠B=∠BCD=∠AB'C',AB'=B'C',AB=BC
因为EC‖CD
所以∠E=∠BCD
所以∠B=∠E
因为∠AB'B+∠AB'C'+∠EB'C'=180°
∠AB'B+∠B+∠B'AB=180°
所以∠B'AB=∠EB'C'
所以△ABB'≌△B'EC'(AAS)
所以BB'=EC',AB=B'E
所以BC=B'E
所以BB'+B'C=B'C+CE
所以BB'=CE
所以CE=EC'
所以∠ECC'=∠EC'C
因为∠ECC'+∠EC'C+∠E=180°
所以2∠ECC'=180°-∠E
所以∠ECC'=90°-∠E/2
因为∠BCC'+∠ECC'=180°
所以∠BCC'+90°-∠E/2=180°
所以∠BCC'=90°+∠E/2
又因为∠E是正N边形的一个内角
所以由正N边形的内角和=(N-2)*180°
得∠E=(N-2)*180°/N
所以∠BCC'=90°+[(N-2)*180°/N]/2
所以∠BCC'=(N-1)*180°/N
⑵正四边形中,∠B'CC'=135°
⑶正五边形中,∠B'CC'=144°
⑷当满足条件的图形为正N边形时,猜想∠BCC'=(N-1)*180°/N
(前三个是最后一个的特殊情形,所以我只给出最后一个的证明)
⑷的证明(几乎写出了所有步骤,实际上有些步骤可以不写的):
过C'作CD的平行线交BC的延长线于E
因为多边形ABCD...和多边形AB'C'D'...是正N边形
所以∠B=∠BCD=∠AB'C',AB'=B'C',AB=BC
因为EC‖CD
所以∠E=∠BCD
所以∠B=∠E
因为∠AB'B+∠AB'C'+∠EB'C'=180°
∠AB'B+∠B+∠B'AB=180°
所以∠B'AB=∠EB'C'
所以△ABB'≌△B'EC'(AAS)
所以BB'=EC',AB=B'E
所以BC=B'E
所以BB'+B'C=B'C+CE
所以BB'=CE
所以CE=EC'
所以∠ECC'=∠EC'C
因为∠ECC'+∠EC'C+∠E=180°
所以2∠ECC'=180°-∠E
所以∠ECC'=90°-∠E/2
因为∠BCC'+∠ECC'=180°
所以∠BCC'+90°-∠E/2=180°
所以∠BCC'=90°+∠E/2
又因为∠E是正N边形的一个内角
所以由正N边形的内角和=(N-2)*180°
得∠E=(N-2)*180°/N
所以∠BCC'=90°+[(N-2)*180°/N]/2
所以∠BCC'=(N-1)*180°/N
图1、2、3分别由两个具有公共顶点A的正三角形,正四边形和正五边形组成的图形,且其中一个正多边形的顶点B
图1,图2、图3是分别由两个公共顶点A的正三角形,正四边形和正五边形组成的图形,且其中一个正多边形顶点B’
图1,图2、图3是分别由两个公共顶点A的正三角形,正四边形和正五边形组成的图形,且其中一个正多边形顶点B
图1、图2、图3是分别由两个具有公共顶点A的正三角形、正四边形和正五边形组成的图形
甲,已,丙是分别由两个具有公共顶点A的正三角形,正四边形和正五边形组成的图形,且其中一个正多边形的顶点B'在另一个正多边
如图(1)(2)(3),点e,d分别是正三角形abc,正四边形abcm,正五边形abcmn中以c点为顶点的一边的延长线与
如图,两个正五边形有一个公共顶点A且有一条边在同一直线MN上,求这两个正无边形重叠而成的四边形ANCD个内角的度数.
如图,两个正五边形有一个公共顶点A且有一条边在同一直线MN上,求着两个正五边形重叠而成的四边形ABCD各角
如图,两个正五边形有一个公共顶点A且有一条边在同一直线MN上,求这两个正五边形重叠部分的面积.
如图,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN,以点C为顶点,一边延长线上的点,且BE=CD,
如图、2、3中,点E、D分别是正△ABC、正四边形ABCM,正五边形ABCMN中以C点为顶点的
一个正三角形有两个顶点在抛物线y^2=2px上,另一个顶点在坐标原点,这个正三角形的边长是?