在数列{an},{bn}中,a1=2,b1=4,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:57:36
在数列{an},{bn}中,a1=2,b1=4,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列(n€n*)
1)求a2,a3,a4及b1,b2,b3,由此猜测{an},{bn}的通项公式;
2)证明:1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+~+1/(an+bn)
1)求a2,a3,a4及b1,b2,b3,由此猜测{an},{bn}的通项公式;
2)证明:1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+~+1/(an+bn)
可知 a2 = 6,b2 = 9,a3=12,b3=16;a4=20
猜想 an = a(n-1) +2*n ; bn = (n+1)^2
可知 an = 2(1+2+..+n) = n(n+1)
证明上述猜想 .
数学归纳法:
1# n =1时,a1=1*2; b1=(1+1)^2 = 4 成立
2# 假设 n = k; 有 ak = k(k+1) ;bk = (k+1)^2
n=k+1 时 a(k+1) = 2bk-ak = 2k^2+4k+2-k^2-k = k^2+3k+2=(k+1)(k+2)
b(k+1) = [a(k+1)]^2/bk = (k+1)^2(k+2)^2/(k+1)^2 = (k+2)^2 也成立
所以证明了 an = (n+1)n ;bn=(n+1)^2
an+bn = (n+1)(2n+1) = (2n+2)(2n+1)/2
1/(an+bn) = 1/(n+1)(2n+1)
猜想 an = a(n-1) +2*n ; bn = (n+1)^2
可知 an = 2(1+2+..+n) = n(n+1)
证明上述猜想 .
数学归纳法:
1# n =1时,a1=1*2; b1=(1+1)^2 = 4 成立
2# 假设 n = k; 有 ak = k(k+1) ;bk = (k+1)^2
n=k+1 时 a(k+1) = 2bk-ak = 2k^2+4k+2-k^2-k = k^2+3k+2=(k+1)(k+2)
b(k+1) = [a(k+1)]^2/bk = (k+1)^2(k+2)^2/(k+1)^2 = (k+2)^2 也成立
所以证明了 an = (n+1)n ;bn=(n+1)^2
an+bn = (n+1)(2n+1) = (2n+2)(2n+1)/2
1/(an+bn) = 1/(n+1)(2n+1)
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an,bn,a(n+1)成等差,bn,a(n+1),b(
数列{an}中a1=1 a(n+1)=2Sn + 1等差数列{bn}中bn大于0 b1+b2+b3=15且a1+b1,a
已知数列an,bn中,a1=0,b1=1,且当n为正整数时,an,bn,an+1成等差数列,bn,an+1,bn+1成等
已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列
已知两等差数列an.bn,且a1+a2+.+an/b1+b2+.+bn=3n+1/4n+3,对于任意正整数n都成立,求a
数列{an}和{bn}中,a1=1,a2=2,an>0,bn=根号(an*a(n+1))(n为正整数),且{bn}是以q
数列{an},{bn}的各项均为正数,a1=1,b1=2,且对于任意自然数n, lg bn、lg a(n+1)、lg b
已知等比数列an中,a1=2,a4=16,数列bn中,b1=1且bn-bn-1=log2an(n≥2),求bn
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证