作业帮 > 数学 > 作业

函数f(x)=x3-3x-m在[0,2]上有零点,则实数m的取值范围是(  )

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:52:57
函数f(x)=x3-3x-m在[0,2]上有零点,则实数m的取值范围是(  )
A. [-2,2]
B. [0,2]
C. [-2,0]
D. 以上都不对
函数f(x)=x3-3x-m在[0,2]上有零点,则实数m的取值范围是(  )
由函数f(x)=x3-3x-m,
得:f(x)=3x2-3=3(x-1)(x+1),
当x∈(0,1)时,f(x)<0,函数f(x)在(0,1)上为减函数,
当x∈(1,2)时,f(x)>0,函数f(x)在(1,2)上为增函数,
所以函数f(x)=x3-3x-m在[0,2]上有极小值,也就是最小值,最小值是f(1)=-2-m,
f(x)在[0,2]内的最大值是f(0)=-m和f(2)=2-m中的较大者,是f(2)=2-m,
要使得函数f(x)=x3-3x-m在[0,2]上有零点,
则:f(1)≤0且f(2)≥0


−2−m≤0
2−m≥0,解得:-2≤m≤2.
所以,函数f(x)=x3-3x-m在[0,2]上有零点的实数m的取值范围是[-2,2].
故选A.