若(X,Y)服从二元正态分布N(-1,5,2,3,-0.5),试求Z=2X-3Y的数学期望E[Z]与方差Var[Z].
大学数学期望与方差若(X,Y)服从二元正太分布N(-1,5,2,3,-0.5),试求Z=2X-3Y的数学期望与方差.
设X与Y相互独立且都服从N(0,1),则随机变量Z=2X-3Y+1的数学期望E(Z)= ,方差D(Z)=
设随机变量x和y服从正态分布,X~N(1,3),Y~N(2,4),X,Y相互独立,Z=X-Y的方差等于
1,设随机变量X,Y独立,N(0,1),N(1,4),令Z=2X-Y+3,求Z的期望E(Z)和方差D(Z),
1.设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度,期望和方差.
设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的方差
设随机变量X,Y独立,N(0,1),N(1,2的平方),令z=x-2y+1,求z的期望e(z)和方差d(z)
随机变量X与Y相互独立且服从N(0,1/2)的正态分布 所以Z=X-Y服从标准正态分布N(0.1) 这是为什么啊?
设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数
一个概率的问题若随机变量X与Y相互独立且服从[0,1]的均匀分布,则Z=MAX{X,Y}的期望E(Z)=?,方差D(Z)
设随机变量X与Y独立,N(μ1,σ1),N(μ2,σ2),求:随机变量函数Z=XY的数学期望与方差
设随机变量X,Y相互独立均服从N(0,1/2)令Z=X+Y,求(1)Z的密度函数(2)E(|Z|) (3)COV(X,Z