作业帮 > 数学 > 作业

已知F1,F2是椭圆x2/a+y2/b=1,(a>b>0)两个焦点,过F1的弦AB与F2组成等腰三角形,其中角BAF2=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:20:11
已知F1,F2是椭圆x2/a+y2/b=1,(a>b>0)两个焦点,过F1的弦AB与F2组成等腰三角形,其中角BAF2=90度,椭圆的离心e,则e等于?
已知F1,F2是椭圆x2/a+y2/b=1,(a>b>0)两个焦点,过F1的弦AB与F2组成等腰三角形,其中角BAF2=
x2/a2+y2/b2=1
F2(c,0)
则垂线x=c
c2/a2+y2/b2=1
y2=b2(1-c2/a2)=b2(a2-c2)/a2=b^4/a2
|y|=b2/a
MF2=b2/a
F1F2=2c
所以b2/a=2c
a2-c2=2ac
c2+2ac-a2=0
c=(-2a±2√2a)/2=-a±√2a
c/a=-1±√2
0