抛物线y的平方=8x上有点p(2,4 )以点p为一个顶点,作抛物线的内接三角形PQR,使三角形的重心是抛物线
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 22:55:38
抛物线y的平方=8x上有点p(2,4 )以点p为一个顶点,作抛物线的内接三角形PQR,使三角形的重心是抛物线
的焦点,求QR所在直线的方程
的焦点,求QR所在直线的方程
y²=2px=8x
所以p/2=2
所以焦点(2,0)
设Q(a,b)
R(c,d)
P(2,4)
重心(2,0)
所以(2+a+c)/3=2
(4+b+d)/3=0
a+c=4,b+d=-4
QR在y²=8x
b²=8a,d²=8c
8a+8c=b²+d²
所以32=(b+d)²-2bd=16-2bd
bd=-8
b=-4-d
-4d-d²=-8
d²+4d-8=0
d=-2±2√3
所以b=-2+2√3,d=-2-2√3
或b=-2-2√3,d=-2+2√3
若取第一组
a=b²/8=2-√3,c=2+√3
所以k=(b-d)/(a-c)=-2
若取第二组,k=2
所以y-(-2-2√3)=2[x-(2+√3)]
和y-(-2+2√3)=-2[x-(2-√3)]
即2x-y-6-4√3=0和2x+y-2=0
所以p/2=2
所以焦点(2,0)
设Q(a,b)
R(c,d)
P(2,4)
重心(2,0)
所以(2+a+c)/3=2
(4+b+d)/3=0
a+c=4,b+d=-4
QR在y²=8x
b²=8a,d²=8c
8a+8c=b²+d²
所以32=(b+d)²-2bd=16-2bd
bd=-8
b=-4-d
-4d-d²=-8
d²+4d-8=0
d=-2±2√3
所以b=-2+2√3,d=-2-2√3
或b=-2-2√3,d=-2+2√3
若取第一组
a=b²/8=2-√3,c=2+√3
所以k=(b-d)/(a-c)=-2
若取第二组,k=2
所以y-(-2-2√3)=2[x-(2+√3)]
和y-(-2+2√3)=-2[x-(2-√3)]
即2x-y-6-4√3=0和2x+y-2=0
抛物线y2=8x上有一点P(2,4),以P为一个顶点,作抛物线的内接三角形△PQR,使得△PQR的重心是抛物线的焦点,求
F为抛物线Y平方等于2PX的焦点,以A(4,2)为抛物线内的一定点,P为抛物线
已知抛物线y平方=4x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时,点P坐标为
抛物线及其标准方程点P是抛物线x^2=4y上的任意一点,过P作抛物线准线的垂线PB,垂足为B,另有一定点A(3,2),求
已知抛物线y^2=2x的焦点为F,定点A(3,2)在抛物线内,求抛物线上点P,使IPAI+IPFI最小,P点坐标是?
已知抛物线y平方=1/2x,O为坐标原点,F为抛物线的焦点,OF=1/8,求抛物线上点P的坐标,
正三角形的一个顶点位于坐标原点,另两个顶点在抛物线Y平方=2PX (P=0)上,求这个三角形的边长.
正三角形的一个顶点位于坐标原点,另两个顶点在抛物线Y平方=2PX (P>0)上,求这个三角形的边长.
设抛物线y^2=4x被直线y=2x-4截得的弦长为AB,以AB为底边,以x轴上的点P为顶点作三角形,当此三角形的面积
抛物线y=-2x平方+5x+3与x轴交与点A、B ,在抛物线上是否存在点P使S三角形ABP=7,这样的点有几个,求出p点
抛物线y=x的平方+2x-3,若P为第三象限抛物线上的一点,设三角形PAC的面积为S,求S的最大值和P点坐标.
已知抛物线y^2=4x,三角形△ABC的顶点A,B在抛物线上,且OA⊥OB,OP⊥AB于点P,求点P的轨迹方程