作业帮 > 数学 > 作业

如何证明 sin(2a)=2sin(a)cos(a) tan^2(α)+1=1/cos^2(α) 高一刚刚学完三角函数.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 19:10:51
如何证明 sin(2a)=2sin(a)cos(a) tan^2(α)+1=1/cos^2(α) 高一刚刚学完三角函数.
如何证明 sin(2a)=2sin(a)cos(a) tan^2(α)+1=1/cos^2(α) 高一刚刚学完三角函数.
第一个:sin(2a)=sin(a+a)=sin(a)*cos(a)+cos(a)*sin(a)=2*sin(a)*cos(a);
第二个:tan^2(α)+1=(sin(α)/cos(α))^2+1
=sin^2(α)/cos^2(α)+1
=sin^2(α)/cos^2(α)+cos^2(α)/cos^2(α)
=[sin^2(α)+cos^2(α)]/cos^2(α)
=1/cos^2(α)
就是这样了