定义在R上的奇函数f(X),其图像关于直线x=1对称
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 02:00:24
定义在R上的奇函数f(X),其图像关于直线x=1对称
(1)求f(x)的周期
(2)求f(0)+f(2)+f(4)+f(6)
(3)若x∈(0,1),f(x)=log2x,求x∈(1,3)时,f(x)=?
第三小问的第一个f(x)是:以2为底x的对数
(1)求f(x)的周期
(2)求f(0)+f(2)+f(4)+f(6)
(3)若x∈(0,1),f(x)=log2x,求x∈(1,3)时,f(x)=?
第三小问的第一个f(x)是:以2为底x的对数
(1)关于x=1对称就是
f(x)=f(1-(x-1))=f(2-x)
注意到f(-x)=-f(x)
所以f(x)=f(2-x)=-f(x-2)=-f(2-(x-2))=-f(4-x)=f(x-4)
所以4是周期.
(2)f(0)=f(2),f(6)=f(-4)=-f(4)
所以f(0)+f(2)+f(4)+f(6)=2f(0)=0(因为是奇函数)
(3)由于f(x)奇,所以当x在(-1,0)时,f(x)=-f(-x)=-log2(-x)
又因为关于x=1对称,所以x∈(1,2)
f(x)=f(2-x)=log2(2-x)
x∈(2,3)
f(x)=f(2-x)=-log2(x-2)
f(x)=f(1-(x-1))=f(2-x)
注意到f(-x)=-f(x)
所以f(x)=f(2-x)=-f(x-2)=-f(2-(x-2))=-f(4-x)=f(x-4)
所以4是周期.
(2)f(0)=f(2),f(6)=f(-4)=-f(4)
所以f(0)+f(2)+f(4)+f(6)=2f(0)=0(因为是奇函数)
(3)由于f(x)奇,所以当x在(-1,0)时,f(x)=-f(-x)=-log2(-x)
又因为关于x=1对称,所以x∈(1,2)
f(x)=f(2-x)=log2(2-x)
x∈(2,3)
f(x)=f(2-x)=-log2(x-2)
定义在R上的奇函数f(X),其图像关于直线x=1对称
已知奇函数f(x)定义在R上,其图像关于直线x=1对称,当x属于[0.1]时,f(x)=x/2.(1)求f(x)的表达式
设f(x)是定义在R上的奇函数,且y=f(x)的图像关于直线x=1/2对称
已知f(x)是定义在R上的奇函数,且它的图像关于直线x=1对称.1.证明f(x)是周期函数.
已知函数f(x)是定义在R上的奇函数,且f(x)的图像关于直线X=1对称.
已知f(x)是定义在R上的奇函数,其图像关于直线x=1对称,且f(20/9)=1,f(x)在【-1,1】上是减函数,若对
已知f(x)是定义在R上的奇函数,且y=f(x)的图像关于直线x=a对称,求证f(x)是周期函数
已知定义在R上的奇函数f(x)的图像关于直线x=1对称,并且当x属于(0.1】时,f(x)=x的平方+1,则f(x)=x
设f(x)是定义在R上的奇函数,g(x)与f(x)的图像关于直线x=1对称,若g(x)=a(x-2)-(x-3)(x-3
设f(x)是定义在R上的周期为4的奇函数,且f(x)的图像关于直线x=a对称,当x属于〔0,1〕时,f(x)=根号x,求
已知f(x)是定义在R上的奇函数,且它的图像关于直线x=1对称 若f(x)=x(0≤x≤1),求x属于[-1,3]时f(
设f(x)是定义在R上的奇函数,g(x)与f(x)的图像关于直线x=1对称,若g(x)=a(x-2)-(x-3)^3,