作业帮 > 数学 > 作业

如果(x²+ax+b)(x²-5x+7)的展开式中不含x²和x³项,则a=?b=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:43:37
如果(x²+ax+b)(x²-5x+7)的展开式中不含x²和x³项,则a=?b=?
如果(x²+ax+b)(x²-5x+7)的展开式中不含x²和x³项,则a=?b=
(x²+ax+b)(x²-5x+7)
=x的4次方-5x³+7x²+ax³-5ax²+7ax+bx²-5bx+7b
=x的4次方-﹙5-a﹚x³+﹙7-5a+b﹚x²+﹙7a-5b﹚x+7b
因为不含x²和x³项,所以 -﹙5-a﹚=0 7-5a+b=0
所以 a=5 b=18