作业帮 > 数学 > 作业

如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,MN是梯形的中位线,∠DBC=30°.求证:AC=MN.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:07:34
如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,MN是梯形的中位线,∠DBC=30°.求证:AC=MN.
如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,MN是梯形的中位线,∠DBC=30°.求证:AC=MN.
设AC与BD的交点为O,
∵AC⊥BD,
∴△BOC与△AOD都是RT△,
在RT△BOC中,
∵∠DBC=30°,
∴OC=1/2BC,(直角三角形中,30°所对的直角边等于斜边的一半)
又∵AD‖BC,
∴∠ADB=∠DBC=30°
∴在RT△AOD中,
AO=1/2AD,(直角三角形中,30°所对的直角边等于斜边的一半)
∴AC=AO+OC=1/2AD+1/2BC=1/2(AD+BC),
又∵MN=1/2(AD+BC),(梯形的中位线等于上下底的和的一半)
∴AC=MN.