作业帮 > 数学 > 作业

设xe^x是f(x)的一个原函数,则∫xf(x)dx=     &nb

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:50:16

设xe^x是f(x)的一个原函数,则∫xf(x)dx=               积分范围是0到1

∫lnx/(1+x)^2 dx=             积分范围是 1  正无穷
设xe^x是f(x)的一个原函数,则∫xf(x)dx=     &nb
既然xe^x是原函数,那么直接将xe^x微分得到f(x)=(1+x)e^x,带入积分得∫xf(x)dx = ∫x(1+x)e^xdx,利用分部积分,分成x(1+x)和e^x,∫x(1+x)e^xdx = x(1+x)e^xdx|(0,1) - ∫(1+2x)e^xdx = x(1+x)e^xdx|(0,1) - (1+2x)e^x|(0,1) + ∫2e^xdx = x(1+x)e^xdx|(0,1) - (1+2x)e^x|(0,1) + 2e^x|(0,1) = 剩下自己算
第二个,令x=e^t,t∈[0,∞],∫lnx/(1+x)^2 dx = ∫te^t/(1+e^t)^2 dt,分部积分,分成t和e^t/(1+e^t)^2,因为e^t/(1+e^t)^2的积分是-1/(1+e^t),∫lnx/(1+x)^2 dt = ∫te^t/(1+e^t)^2 dt = -t/(1+e^t)|(0,∞) + ∫1/(1+e^t) dt = -t/(1+e^t)|(0,∞) + ∫1/x(1+x) dx = -t/(1+e^t)|(0,∞) + ∫[1/x-1/(1+x)] dx = -t/(1+e^t)|(0,∞) + [lnx-ln(1+x)]|(1,∞) = 剩下自己算(求极限)