作业帮 > 数学 > 作业

已知二次函数f(x)=ax2+bx+c的导数为f’(x).f’(0)>0,对任意实数x有f’(x)≥0,则f’(x)/f

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:55:50
已知二次函数f(x)=ax2+bx+c的导数为f’(x).f’(0)>0,对任意实数x有f’(x)≥0,则f’(x)/f(1)的最大值为
不好意思,我写错了 原题是
已知二次函数f(x)=ax^2+bx+c的导数为f’(x)。f’(0)>0,对任意实数x有f(x)≥0,则f’(0)/f(1)的最大值为
真的很抱歉
答案是1/2
已知二次函数f(x)=ax2+bx+c的导数为f’(x).f’(0)>0,对任意实数x有f’(x)≥0,则f’(x)/f
∵f'(x)=2ax+b,∴f'(0)=b>0,∵对任意实数x有f(x)≥0,∴△≤0,a>0
∴b^2-4ac≤0,移项后,1/4≤ac/b^2,开根号,1/2≤根号(ac/b^2)
f'(0)/f(1)=b/(a+b+c),上下同时除以b,f'(0)/f(1)=1/(a/b+c/b+1)
运用均值不等式可知a/b+c/b≥2*根号(ac/b^2)
∵1/2≤根号(ac/b^2)∴a/b+c/b≥1
在不等式两边同时加1,a/b+c/b+1≥2
化为倒数1/(a/b+c/b+1)≥1/2,∴b/(a+b+c)≥1/2
∴f'(0)/f(1)≥1/2,∴f'(0)/f(1)的最大值为1/2
就是这样了,如果过程有看不懂的就再问我吧