作业帮 > 数学 > 作业

在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知sinC+cosC=1-sin(C/2),(1)求sinC

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:12:11
在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知sinC+cosC=1-sin(C/2),(1)求sinC (2)若a2+b2=4(a+b)-8,求边c
求问cosc的负值是怎么舍去的
在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知sinC+cosC=1-sin(C/2),(1)求sinC
sinC+cosC=1-sin(C/2)
sinC=1-cosC-sin(C/2)
2sin(C/2)cos(C/2)=2sin²(C/2)-sin(C/2)
∵sin(C/2)≠0
∴2cos(C/2)=2sin(C/2)-1
sin(C/2)-cos(C/2)=1/2
[sin(C/2)-cos(C/2)]^2=1/4
1-sinC=1/4,
sinC=3/4
(2)
∵a^2+b^=4(a+b)-8
∴(a-2)^2+(b-2)^2=0
∴a=2,b=2
∵sin(C/2)-cos(C/2)=1/2
∴[sin(C/2)+cos(C/2)]^2=1+3/4=7/4
∴sin(C/2)+cos(C/2)=√7/2
∴sin(C/2)=(√7+1)/4
∴cosC=1-sin(C/2)-sinC=1/4-sin(C/2)=-√7/4
∴c^2=a^2+b^2-2abcosC=8+2√7
∴c=1+√7