在三角形ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:54:20
在三角形ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG。求证AG=AD
不懂得有两个条件去哪找第三个条件
不懂得有两个条件去哪找第三个条件
解题思路: 本题主要考查了学生对三角形全等的掌握情况,及三角形高的运用。
解题过程:
1、证明:
∵BE⊥AC
∴∠AEB=90
∴∠ABE+∠BAC=90
∵CF⊥AB
∴∠AFC=∠AFG=90
∴∠ACF+∠BAC=90,∠G+∠BAG=90
∴∠ABE=∠ACF
∵BD=AC,CG=AB
∴△ABD≌△GCA (SAS)
∴AG=AD
最终答案:1、证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD
解题过程:
1、证明:
∵BE⊥AC
∴∠AEB=90
∴∠ABE+∠BAC=90
∵CF⊥AB
∴∠AFC=∠AFG=90
∴∠ACF+∠BAC=90,∠G+∠BAG=90
∴∠ABE=∠ACF
∵BD=AC,CG=AB
∴△ABD≌△GCA (SAS)
∴AG=AD
最终答案:1、证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD
在三角形ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接A
如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接
已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB
在三角形ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD
已知,如图在△ABC中,BE,CE,分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,
已知,如图,BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG等于AB,连接
如图三角形ABC中,BE,CF分别是AC,AB边上的高在BE的延长线上截取BM=AC,在CF的延长线上截取CN=AB.识
已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB.
已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB
如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB
BE和CF是三角形ABC的高,在BE上截取BD=AC,在射线CF上截取CM=AB.求证:AD=AM.
如图,已知锐角三角形ABC中,BE、CF分别是高线,在高BE上截取BM=AC,在高CF延长线上截取CN=AB,连AM、A