作业帮 > 数学 > 作业

用数学归纳法证明以下行列式:

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:27:59
用数学归纳法证明以下行列式:
用数学归纳法证明以下行列式:
n=1时显然成立
设(aij)=A,(bij)=B,等式左边的行列式为G(n)
假设n-1时成立,即G(n-1)=A(n-1)乘以B(n-1),
那么n时,按第一行展开,G(n)=所有a1i乘上它在G(n)中的代数余子式并求和
而每个a1i在G(n)中的代数余子式就等于a1i在A(n)中的代数余子式乘上B(n)的行列式
所以G(n)等于B(n)的行列式再乘上(a1i乘上它在A(n)中的代数余子式并求和),
也就等于B(n)的行列式乘上A(n)的行列式
这是分块矩阵的基本性质,一般高等代数书上都有证明.