作业帮 > 数学 > 作业

平面上有两点A(-1,0),B(1,0),点P在圆周(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时点P的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 20:13:08
平面上有两点A(-1,0),B(1,0),点P在圆周(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时点P的坐标.
平面上有两点A(-1,0),B(1,0),点P在圆周(x-3)2+(y-4)2=4上,求使AP2+BP2取最小值时点P的
根据题意,作点P关于原点的对称点Q,则四边形PAQB是平行四边形,
由平行四边形的性质,有AP2+BP2=
1
2(4OP2+AB2),
即当OP最小时,
AP2+BP2取最小值,
而OPmin=5-2=3,
Px=3×
3
5=
9
5,Py=3×
4
5=
12
5,P(
9
5,
12
5).