一道数学题:设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/23 22:30:13
一道数学题:设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.
设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.
(1)设bn=Sn-3^n,求数列{bn}的通项公式;
(2)若a(n+1)≥an,n属于N*,求a的取值范围.
设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.
(1)设bn=Sn-3^n,求数列{bn}的通项公式;
(2)若a(n+1)≥an,n属于N*,求a的取值范围.
1:A(n+1)=S(n+1)-Sn
得:S(n+1)-Sn=Sn+3^n
∴S(n+1)=2Sn+3^n
∴S(n+1)-3*3^n=2Sn-2*3^n
∴S(n+1)-3^(n+1)=2(Sn-3^n)
∴B(n+1)=2Bn
又∵S1=A1=a,B1=a-3
∴Bn为以a-3为首项,2为公比的等比数列
∴Bn=(a-3)*2^(n-1)
2:a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an
=bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2)
a>=3-12*(3/2)^(n-2)
因为(3/2)^(n-2)最小=(3/2)^(1-2)=2/3
3-12*(3/2)^(n-2)最大=3-12*2/3=-5
a>=-5
得:S(n+1)-Sn=Sn+3^n
∴S(n+1)=2Sn+3^n
∴S(n+1)-3*3^n=2Sn-2*3^n
∴S(n+1)-3^(n+1)=2(Sn-3^n)
∴B(n+1)=2Bn
又∵S1=A1=a,B1=a-3
∴Bn为以a-3为首项,2为公比的等比数列
∴Bn=(a-3)*2^(n-1)
2:a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an
=bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2)
a>=3-12*(3/2)^(n-2)
因为(3/2)^(n-2)最小=(3/2)^(1-2)=2/3
3-12*(3/2)^(n-2)最大=3-12*2/3=-5
a>=-5
一道数学题:设数列{an}的前n项和为Sn.已知a1=a,a(n+1)=Sn+3^n,n属于N*.
一道数学题:设数列{an}的前n项和为Sn.已知a1=a,a(n-1)=Sn+3^n,n属于N.
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
数列的.设数列{an}的前n项和为Sn,已知a1=a,数列第(n+1)项=Sn+3^n,n属于正整数1.设bn=Sn-3
设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由
已知数列{an}的前n项和为Sn,且a1=2,3Sn=5an-A(n-1)+3S(n-1)(n≥2,n属于N*)设bn=
设数列an的前n项和为sn,已知a1=a,a不等于3,a(n+1)=sn+3^n
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项
数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn
设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn
设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0