求定积分∫(-π/2→π/2)(x|x|+cosx)dx/[1+(sinx)^2]
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:54:34
求定积分∫(-π/2→π/2)(x|x|+cosx)dx/[1+(sinx)^2]
∫(-π/2→π/2)(x|x|+cosx)dx/[1+(sinx)^2]
=∫(-π/2→π/2)x|x|*dx/[1+(sinx)^2]+∫(-π/2→π/2)cosx*dx/[1+(sinx)^2]
由于x|x|*dx/[1+(sinx)^2]是奇函数,故∫(-π/2→π/2)x|x|*dx/[1+(sinx)^2]=0
原式=∫(-π/2→π/2)cosx*dx/[1+(sinx)^2]
=∫(-π/2→π/2)d(sinx)/[1+(sinx)^2]
=[arctan(sinx)]|(-π/2,π/2)
=arctan[sin(π/2)]-arctan[sin(-π/2)]
=arctan1-arctan(-1)
=2arctan1
=2*π/4
=π/2
=∫(-π/2→π/2)x|x|*dx/[1+(sinx)^2]+∫(-π/2→π/2)cosx*dx/[1+(sinx)^2]
由于x|x|*dx/[1+(sinx)^2]是奇函数,故∫(-π/2→π/2)x|x|*dx/[1+(sinx)^2]=0
原式=∫(-π/2→π/2)cosx*dx/[1+(sinx)^2]
=∫(-π/2→π/2)d(sinx)/[1+(sinx)^2]
=[arctan(sinx)]|(-π/2,π/2)
=arctan[sin(π/2)]-arctan[sin(-π/2)]
=arctan1-arctan(-1)
=2arctan1
=2*π/4
=π/2
求定积分∫(-π/2→π/2)(x|x|+cosx)dx/[1+(sinx)^2]
求定积分∫[-π/2~π/2][sinx/1+x^2+(cosx)^2]dx
求定积分x在0到π/2上 1/(cosx+sinx)dx
求定积分(0到π/2)sin^3x/(sinx+cosx)dx=?
计算定积分∫(π/2~0) x(sinx+cosx) dx
求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx
求定积分上限为兀下限为0 x(sinx)^3/[1+(cosx)^2]dx
求定积分∫x*√1+cosx dx 范围从0到2π
证明定积分(0到π/2)sin^3x/(sinx+cosx)dx=定积分(0到π/2)cos^3x/(sinx+cosx
(x+cosx^2)sinx^4dx 在-π/2 到 π/2 上的定积分
求定积分∫(sinx)^3/(x^2+1)dx 范围-π/2到π/2
求∫sinx dx/(sinx+cosx)的积分,x/2-ln|sinx+cosx|+c