作业帮 > 数学 > 作业

2012年江苏高考数学第19题第二问几何证明

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:33:11
2012年江苏高考数学第19题第二问几何证明
修正:2012江西高考数学第19题
2012年江苏高考数学第19题第二问几何证明
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=√5,BC=4,在A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值. (1)证明:∵在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=√5,BC=4,在A1在底面ABC的投影是线段BC的中点O∴AA1//面BB1C1C==>面A1AO⊥面ABC==>BC⊥面A1AO==>面A1AO⊥面BB1C1C过O作OE⊥AA1交AA1于E∴OE⊥面BB1C1C连接OA,OA=√(AB^2-OB^2)=1A1O=√(AA1^2-OA^2)=2OA^2=AE*AA1==>AE=√5/5 (2)解析:求平面A1B1C与平面BB1C1C夹角的余弦值.过C1作C1F⊥B1C交B1C于F,过F作FG⊥B1C交A1C于G,连接GC1∴∠GFC1为平面A1B1C与平面BB1C1C夹角的平面角∵BB1C1C为矩形,∴∠CC1B1=π/2在⊿CB1C1中,B1C=√(B1C1^2+CC1^2)=√21B1C1^2=B1F*B1C==>4^2=B1F*√21==>B1F=16/√21FC1=√(B1C1^2-FB1^2)= 4√5/√21   由(1)A1O=2,OC=2,∴A1C=2√2在⊿A1CB1中Cos∠A1CB1=(A1C^2+B1C^2-A1B1^2)/(2A1C*B1C)=(8+21-5)/(2*2√42)=6/√42CF=√21-16/√21=5/√21tan∠A1CB1=GF/CF=√6/6==>GF=5√14/42  Cos∠A1CB1=CF/CG=6/√42==>CG=5/√21*√42/6=5√2/6 在⊿A1CC1中Cos∠A1CC1=(A1C^2+C1C^2-A1C1^2)/(2A1C*C1C)=(8+5-5)/(2*2√10)=2/√10CG=5√2/6GC1=√(GC^2+CC1^2-2*GC*CC1*cos∠A1CC1)=√(50/36+5-2*5√2/6*√5*2/√10)=√(55/18)   在⊿GFC1中Cos∠GFC1=(GF^2+FC1^2-GC1^2)/(2GF*C1F)=(25/126+80/21-55/18)/(2*5√14/42*√80/√21)=√30/10