已知a^2+b^2=1,b^2+c^2=2,a^2+c^2=2,则ab+ac+bc的最小值是多少?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:06:46
已知a^2+b^2=1,b^2+c^2=2,a^2+c^2=2,则ab+ac+bc的最小值是多少?
应该有更简便的方法吧
应该有更简便的方法吧
已知:a²+b²=1,b²+c²=2,a²+c²=2.
求:ab+ac+bc的最小值.
首先,根据已知条件,解出a、b、c的值.
根据已知,
a²+b²=1 ①
b²+c²=2 ②
a²+c²=2 ③
③-①,得
b²=1/2,即b=±1/√2.(√表示根号)
将b²的值代入①中,得
a²=1/2,即a=±1/√2.
将a²的值代入②中,得,
c²=3/2,即c=±√3/√2.
a、b、c各有两个值.因为要求ab+ac+bc的最小值,就是必须使每项乘积得到负数.根据“正正得正,负负得正,正负得负”的原理,每项乘积中,两个值必须取相反符号.于是得到
ab+ac+bc=-1/2-√3/2-√3/2
=-1/2-√3
≈-2.2321.
求:ab+ac+bc的最小值.
首先,根据已知条件,解出a、b、c的值.
根据已知,
a²+b²=1 ①
b²+c²=2 ②
a²+c²=2 ③
③-①,得
b²=1/2,即b=±1/√2.(√表示根号)
将b²的值代入①中,得
a²=1/2,即a=±1/√2.
将a²的值代入②中,得,
c²=3/2,即c=±√3/√2.
a、b、c各有两个值.因为要求ab+ac+bc的最小值,就是必须使每项乘积得到负数.根据“正正得正,负负得正,正负得负”的原理,每项乘积中,两个值必须取相反符号.于是得到
ab+ac+bc=-1/2-√3/2-√3/2
=-1/2-√3
≈-2.2321.
已知实数a、b、c满足a×a+b×b=1,b×b+c×c=2,c×c+a×a=2,则ab+bc+ac的最小值是多少?
已知a^2+b^2=1,b^2+c^2=2,a^2+c^2=2,则ab+ac+bc的最小值是多少?
已知a×a+b×b=1,b×b+c×c=2,c×c+a×a=2,求ab+bc+ca的最小值是多少?
已知a,b,c均为实数,a^2+b^2+c^2=1,则ab+bc+ac的最大值和最小值分别是什么?
已知实数a.b.c满足a^+b^=1,b^+c^=2,c^+a^=2,则ab+bc+ca的最小值为?
已知a,b,c为正数,且a^2+bc+ab+ac=16,求2a+b+c的最小值
已知a+b+c=0,求a^2+b^2+c^2+2ab+2bc+2ac是多少?
已知实数a、b、c满足a的平方+b的平方=1,c的平方+b的平方=2,a的平方+c的平方=2,则ab+bc+ac的最小值
已知实数a,b,c满足a^2+b^2=1 b^2+c^2=1 a^2+c^2=1 则ab+bc+ac的最小值为
已知a+b+c=0,求a*a/(2a*a+bc)+b*b/(2b*b+ac)+c*c/(2c*c+ab)
已知正方形ABCD的边长等于1,向量AB=a,向量BC=b,向量AC=c,则2a+b-c的模是多少,
已知a-b=b-c=0.6,a+b+c=1求2a+2b+2c-2ab-2bc-2ac的值