已知OB向量=(2,0),OC向量=(2,2),CA向量=(根二倍的cox阿尔法,跟二倍的sin阿尔法),则OA向量与O
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 05:04:59
已知OB向量=(2,0),OC向量=(2,2),CA向量=(根二倍的cox阿尔法,跟二倍的sin阿尔法),则OA向量与OB
向量夹角的取值范围.
向量夹角的取值范围.
OB=(2,0) 说明B点坐标为(2,0)
OC=(2,2)说明C点坐标为(2,2)
CA=(根号2·cos α,根号2·sin α),说明A点在以C点为圆心,根号2为半径的圆上,设该圆为圆C
求OA与OB的夹角,就是OA与X轴正向的夹角
令根号的写法为sqrt()
做直线OD与靠近B点这侧的圆C相切,切点为D,连接CD,则OC=2sqrt(2) CD=sqrt(2) 则sin角COD=1/2,则角COD=30度
同理做直线OE与远离B点这侧的圆C相切,切点为E,连接CE,则OC=2sqrt(2) CE=sqrt(2) 则sin角COE=1/2,则角COE=30度.
而角COB为45度,则脚DOB=15度
则所求的范围为[15度,75度]
OC=(2,2)说明C点坐标为(2,2)
CA=(根号2·cos α,根号2·sin α),说明A点在以C点为圆心,根号2为半径的圆上,设该圆为圆C
求OA与OB的夹角,就是OA与X轴正向的夹角
令根号的写法为sqrt()
做直线OD与靠近B点这侧的圆C相切,切点为D,连接CD,则OC=2sqrt(2) CD=sqrt(2) 则sin角COD=1/2,则角COD=30度
同理做直线OE与远离B点这侧的圆C相切,切点为E,连接CE,则OC=2sqrt(2) CE=sqrt(2) 则sin角COE=1/2,则角COE=30度.
而角COB为45度,则脚DOB=15度
则所求的范围为[15度,75度]
已知OB向量=(2,0),OC向量=(2,2),CA向量=(根二倍的cox阿尔法,跟二倍的sin阿尔法),则OA向量与O
已知向量OB=(2,0),向量OC=(2,2),向量CA=(-1,-3),求向量OA与向量OB夹角
关于点的轨迹)已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sin,√2cosα),求向量OA与向量
已知向量OB=(2,0),向量OC=(0,2),向量CA=(√3cosa,√3sina)求向量OA与向量OB的夹角
已知向量OB=(2,0),向量OC=(2,2),向量CA=(√2cosx,√2sinx)则向量OA与
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
向量OB=(2,0),向量OC=(2,2),向量CA=(√2cos a,√2sin a),则向量OA与OB的夹角范围?
已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sin,√2cosα),求向量OA与向量OB夹角的取值
已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sinα,√2cosα),求向量OA与向量OB夹角的取
已知向量OB=(2,0) OC=(2,2) CA=(根2cosa,根2sina)(o为原点坐标)则向量OA与OB夹角的取
已知向量OB=(2,0),OC=(2,2),CA=(√2cosa,√2sina),则OA向量与OB向量的家教的范围
设OA向量=(3,1),OB向量=(-1,2),OC向量⊥OB向量,BC向量‖OA向量,试求OC向量的坐标(O为坐标原点