如图,在平面直角坐标系中,抛物线y=-1/2x^2+bx+c经过A(-2,0),c(4,0) 在线等
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:28:38
如图,在平面直角坐标系中,抛物线y=-1/2x^2+bx+c经过A(-2,0),c(4,0) 在线等
1 抛物线的解析式 2第一象限外,一点E是BC为直角边的△BCE∽△AOB
3 BC上方抛物线,一点D使SBCD:S△ABC=1:4 D的坐标
在y轴上
1 抛物线的解析式 2第一象限外,一点E是BC为直角边的△BCE∽△AOB
3 BC上方抛物线,一点D使SBCD:S△ABC=1:4 D的坐标
在y轴上
把图传上来看看
1、把A、B两点的坐标代入y=-1/2x^2+bx+c,得:
-2-2b+c=0
-8+4b+c=0
解得:b=1,c=4
所以二次函数的解析式为:y=-1/2x^2+x+4
2、B点在哪儿
过B点和C点作BC的直线,记E点在这两条直线上的坐标为(x,y)
BC的解析式为y=-x+4,BE的解析式为y=x+4,CE的解析式为y=x-4
因为BC=√(4^2+4^2)=4√2
若要使两三角形相似,则BE=CE=2√2
即:(0-x)^2+(x+4)^2=8或(4-x)^2+(x-4)^2=8
解得:x=-2或x=2,6
在BE的E点坐标为(-2,2),在CE上E点的坐标为(2,-2)和(6,2)(在第一象限,舍去)
3、因为S三角形BCD等于1/2*BC*抛物线上D与直线BC的距离.
而S三角形ABC=1/2*4*6=12.
设D点坐标为(x,y),由第2问可知,BC=4√2.
所以,D点到BC的距离为2*12/4/4√2=3√2/4.
把D点坐标代入y=-1/2x^2+x+4,可求D点坐标.
第3问太麻烦了,还得用上D点到BC垂线的解析式y=x+b.
1、把A、B两点的坐标代入y=-1/2x^2+bx+c,得:
-2-2b+c=0
-8+4b+c=0
解得:b=1,c=4
所以二次函数的解析式为:y=-1/2x^2+x+4
2、B点在哪儿
过B点和C点作BC的直线,记E点在这两条直线上的坐标为(x,y)
BC的解析式为y=-x+4,BE的解析式为y=x+4,CE的解析式为y=x-4
因为BC=√(4^2+4^2)=4√2
若要使两三角形相似,则BE=CE=2√2
即:(0-x)^2+(x+4)^2=8或(4-x)^2+(x-4)^2=8
解得:x=-2或x=2,6
在BE的E点坐标为(-2,2),在CE上E点的坐标为(2,-2)和(6,2)(在第一象限,舍去)
3、因为S三角形BCD等于1/2*BC*抛物线上D与直线BC的距离.
而S三角形ABC=1/2*4*6=12.
设D点坐标为(x,y),由第2问可知,BC=4√2.
所以,D点到BC的距离为2*12/4/4√2=3√2/4.
把D点坐标代入y=-1/2x^2+x+4,可求D点坐标.
第3问太麻烦了,还得用上D点到BC垂线的解析式y=x+b.
如图,在平面直角坐标系中,抛物线y=-1/2x^2+bx+c经过A(-2,0),c(4,0) 在线等
如图 在平面直角坐标系中,抛物线Y=-2/3X2+BX+C经过A(0,-4),B(X1,0),C(X2,0),且X2-X
如图,在平面直角坐标系中,抛物线y=ax²+bx+c=0经过A(-2,-4)B(0,-4),C(2,0)三点
如图,在平面直角坐标系中,抛物线y=ax^2+bx+c(a≠0)的图像经过M(1,0)
如图,在平面直角坐标系中,抛物线y=x^2+bx+c经过点(1,-1),且对称轴为在线x=2,点P,Q均在抛物线上,点P
在平面直角坐标系中抛物线AX²+BX+C经过A(-2,0)O(0,0)B(2,4)三点(1)求抛物线Y=AX&
如图,在平面直角坐标系中,抛物线y= -(2/3)x^2+bx+c 经过A(0,-4)、B(x1,0)、C(x2,0)三
如图 在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C.(1)求抛物线的
如图 在平面直角坐标系xoy中,已知抛物线y=x²+bx+c经过A(0,3),B(1,0)两点,顶点为M
在平面直角坐标系xoy中,抛物线y=-1/2x^2+bx+c经过点A(1,3),B(0,1)
在平面直角坐标系xoy中,抛物线y=-1/2x^2+bx+c经过点A(1,3),B(0,1)
如图,在平面直角坐标系中,已知抛物线y=ax²+bx+c交x轴于A(2,0),B(6,0