线性代数大学试卷两题1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:23:58
线性代数大学试卷两题
1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分条件 )
2.设 A(m*n)为实矩阵,秩r(A)=n ,则 ( )
(A) 相似于 ; (B)A*(A^T) 合同于E ;
(C) 相似于 ; (D)(A^T)*A 合同于E .
,求解释B和D的差异
1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分条件 )
2.设 A(m*n)为实矩阵,秩r(A)=n ,则 ( )
(A) 相似于 ; (B)A*(A^T) 合同于E ;
(C) 相似于 ; (D)(A^T)*A 合同于E .
,求解释B和D的差异
1.用定义验证:对于任意的n维非零向量y,因为Ax=0只有零解,所以Ay≠0,所以y^T(A^TA)y=(Ay)^T(Ay)>0,所以A^TA是正定矩阵
2.
A是m×n实矩阵,秩是n ,则n≤m
A*(A^T)是m×m矩阵,秩是n,所以当n<m时,A*(A^T)不是可逆矩阵,自然不会合同于E
2.
A是m×n实矩阵,秩是n ,则n≤m
A*(A^T)是m×m矩阵,秩是n,所以当n<m时,A*(A^T)不是可逆矩阵,自然不会合同于E
线性代数大学试卷两题1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分
设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解.
A是m*n实矩阵 线性方程Ax=0只有零解是矩阵AtA为正定矩阵的什么条件?
设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.
线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组
设A为m*n矩阵,则齐次线性方程组AX=0仅有非零解的充分必要条件是2
设A为m*n矩阵,则齐次线性方程组AX=0仅有非零解的充分必要条件是()
设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分必要条件是()
设A为m*n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是?
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是( )
设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是
关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为