设任意一个n维向量都是方程组AX= 0的解.则r(a)为多少?ps请问这里的n维...
设任意一个n维向量都是方程组AX= 0的解.则r(a)为多少?ps请问这里的n维...
证明方程组AX=0的任意n-r个线性无关的解向量都是它的一个基础解系.
设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为
设A为m*n矩阵,证明:若任一个n维向量都是AX=0的解,则A=0
设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0
设有齐次线性方程组AX=0,其中A为m*n矩阵,X为n维列向量,R(A)=r,则方程组AX=0的基础解系中有几个向量,当
设A,B都是n阶矩阵,B不等于0向量,且B的每一列都是方程组AX=0的解,则detA=?
设A为n阶方阵,且r(A)=n-1,α1,α2是AX=0的两个不同的解向量,则方程组AX=0的通解为
设m×n矩阵A的秩r(A)=n-3(n>3),α,β,γ是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0
设n元齐次方程组AX=0的系数矩阵的秩为r,则AX=0有非零解的充分必要条件是 A r=n B
设A为n阶方阵,方程组Ax=b对有些n维向量b有解,对有些n维向量b无解,则()
设A是n阶方阵,若对任意的n维向量X均满足AX=0则A=0?