作业帮 > 数学 > 作业

1.证明任意两个n*n非奇异矩阵行等价 2.奇异矩阵B可能行等价于非奇异矩阵A吗?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 18:23:59
1.证明任意两个n*n非奇异矩阵行等价 2.奇异矩阵B可能行等价于非奇异矩阵A吗?
1.证明任意两个n*n非奇异矩阵行等价 2.奇异矩阵B可能行等价于非奇异矩阵A吗?
等价的定义:A~B,A可以经若干次初等变换得到B

n阶奇异矩阵,就是行列式等于零的矩阵,而非奇异就是行列不为零(等价于可逆)

A为可逆矩阵的一个充要条件是A与E等价.

等价是等价关系,有自反性,对称性,和传递性

故两个n阶非奇异矩阵一定等价,因为他们都等价于E.

另外,于一个n阶非奇异矩阵一定等价的矩阵一定是一个可逆矩阵.

故,奇异矩阵B不可能行等价于非奇异矩阵A,因为B不能等价于E,而A可以等价于E.