作业帮 > 数学 > 作业

已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 20:55:26
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
答对得分
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异
用反正法解这类题,方法就是假设和求证相反,然后根据假设推出和已知条件的矛盾,然后就可以了!
就拿这个题给你解解看:
证明:假设AE、DF在同一平面上.
根据异面相交与一条直线的原理就可以知道:
面AEFD与面BCD应该交与一条直线
那么就是说EF、DF就是在同一条直线上
也就是说E、F两点为同一个点
那么就知道了 E也就是边BC的中点
又因为AE垂直BC
由这两个条件就可以推出 AB=AC
这个结论与已知的AB不等于AC相矛盾
那么就是说假设不成立
假设不成立的话,就是说AE和df不是同一面的直线
所以就证明了AE、DF为异面直线
ok