作业帮 > 数学 > 作业

证明1-tan^2x/1+tan^2x=cos^2x-sin^2x

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:56:26
证明1-tan^2x/1+tan^2x=cos^2x-sin^2x
我们很多公式没教,应该不能用。有其他麻烦的方法吗
证明1-tan^2x/1+tan^2x=cos^2x-sin^2x
是 [ 1 -(tan x)^2 ] / [ 1 +(tan x)^2 ] = (cos x)^2 -(sin x)^2
= = = = = = = = =
证明:[ 1 -(tan x)^2 ] / [ 1 +(tan x)^2 ]
= { [ 1 -(tan x)^2 ] *(cos x)^2 } / { [ 1 +(tan x)^2 ] *(cos x)^2 }
= [ (cos x)^2 -(sin x)^2 ] / [ (cos x)^2 +(sin x)^2 ]
= (cos x)^2 -(sin x)^2.
= = = = = = = = =
分子分母同时乘以 (cos x)^2 ,传说中的切割化弦.