作业帮 > 综合 > 作业

宇宙中某处星际尘埃的密度为 :2 × 10−17kg/m3

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 09:13:29
宇宙中某处星际尘埃的密度为 :2 × 10−17kg/m3
引力常数:G = 6.67 ×10^−11Nm^2/kg2.
假设这些尘埃构成了一个均匀的球体,而且逐渐收缩形成一个新的星球.
求所需时间t (用密度和引力常数表达)
(提示:用开普勒定律得到正确的系数)
宇宙中某处星际尘埃的密度为 :2 × 10−17kg/m3
首先设星云是球形的半径是r初始半径是R
星云收缩过程中表面重力加速度是
g=G*m/r^2 ------1式
其中
m是星云质量是p*V=p*4/3*π*(R^3)(其中p密度2×10−17kg/m3 )代入1式得
g=G*p*4/3*π*(R^3)/r^2-----2式
下面是微积分

d(v)=g*d(t)其中v是星云表面收缩速度,将2式代入
d(v)=G*p*4/3*π*(R^3)/r^2*d(t)------3式
又由
d(r)= -v*d(t)代入3式得
d(v)=G*p*4/3*π*(R^3)/r^2*d(r)/(-v)
=>(-v)*d(v)=G*p*4/3*π*(R^3)/r^2*d(r)
解这个微分方程,(初始条件v=0时r=R)
-v^2/2= -G*p*4/3*π*(R^3)/r+G*p*4/3*π*(R^2)然后将其代入
d(r)= -v*d(t) 得
d(r)= -((G*p*4/3*π*(R^3)/r-G*p*4/3*π*(R^2))*2)^(1/2)*d(t)
解一下这个关于r和t的微分方程初始条件是t=0时r=R
然后算出当r=0时t的值就是所求!
不好意思我数学不好算不出来