各项均为正数的数列an的前n项和为Sn,a1=2,(an-2)²=8S(n-1) (n>=2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 16:11:07
各项均为正数的数列an的前n项和为Sn,a1=2,(an-2)²=8S(n-1) (n>=2)
证明an是等差数列并求通项公式
证明an是等差数列并求通项公式
(an-2)²=8S(n-1)
(an+1-2)^2=8Sn 相减
(an+1-2)^2-(an-2)²=8an
an+1^2-4an+1-an^2+4an=8an
(an+1^2-an^2)=4an+1+4an
(an+1+an)(an+1-an)=4(an+1+an) 因为各项均为正数,所以an+1+an>0
所以 an+1-an=4
所以{an}为等差数列,公差d=4,首项a1=2
an=a1+(n-1)d=4n-2
(an+1-2)^2=8Sn 相减
(an+1-2)^2-(an-2)²=8an
an+1^2-4an+1-an^2+4an=8an
(an+1^2-an^2)=4an+1+4an
(an+1+an)(an+1-an)=4(an+1+an) 因为各项均为正数,所以an+1+an>0
所以 an+1-an=4
所以{an}为等差数列,公差d=4,首项a1=2
an=a1+(n-1)d=4n-2
各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列
各项均为正数的数列an的前n项和为Sn,a1=2,(an-2)²=8S(n-1) (n>=2)
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
已知各项均为正数的数列 {an}的前n项和满足Sn〉1,且6Sn=(an+1)(an+2),n∈N* 求 (1)a1 (
各项为正数的数列{an},其前n项和为Sn,且Sn=(√(Sn-1)+√a1)^2(n≥2),数列{bn}的前n项和为T
数列{an}的各项均为正数,前n项和为Sn,对于n为正整数,总有an,根号下2Sn,a(n+1)成等比数列,且a1=1
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
已知各项均为正数的数列{an}的前n项和为Sn,满足Sn=(an²+an)/2,(1)求a1,a2,a3的值;
已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an
已知各项均为正数的数列{an}中,a1=1,sn是数列{an}的前n项的和对任意n属于正整数有2Sn=2pan^2+pa
各项都为正数的数列an,满足a1=1,a(n+1)^2-an^2=2,数列{an的平方/2^n}的前n项和sn
数列an前n项和为sn,a1=1,2s(n+1)-sn=2.n∈n*.求an的通项公式