12个小钢球,其中有一个是次品,次品与其他小球外观一样重量不一样只有一个天平最多称三次找出次品小球
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:36:40
12个小钢球,其中有一个是次品,次品与其他小球外观一样重量不一样只有一个天平最多称三次找出次品小球
把这三组钢球分别编号为 A组、B组、C组. 首先,选任意的两组球放在天平上称.例如,我们把A、B两组放在天平上称.这就会出现两种情况: 第一种情况,天平两边平衡.那么,不合格的坏球必在c组之中. 其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次.这时,又可能出现两种情况: 1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球. 称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果.这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3. 2·天平两边不平衡.这样,坏球必在C1、C2中.这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡.这是称第二次. 称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果.道理同上. 以上是第一次称之后出现第一种情况的分析. 第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中. 我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3. 这时,可以称第二次了.这次称后可能出现的是三种情况: 1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球. 这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球. 2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球. 以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1). 3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球. 以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球. 根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球.如果我们现在假定出现的情况是A组轻于B组,这又该如何推论?请你们试着自己推论一下.
12个小钢球,其中有一个是次品,次品与其他小球外观一样重量不一样只有一个天平最多称三次找出次品小球
现在我们只有一个天平 现在有12个小球 其中一个次品 如何我们只称三次找出次品
有12个球,其中一个为次品,重量不一样,如何用一个天平称三次吧他找出来?
有27个外表一样的球,其中只有一个是次品,重量比正品轻.请你用天平称三次,把次品找出来
有12个外表上一样的球,其中有一个是重量稍微轻的次品,用天平只称三次,你能找出次品吗?
有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?
有七个小球,其中六个是实心的,一个是空心的次品,请你用天平最多称两次,将次品找出来
12个球,其中一个是次品,重量与其他球不一样,给一个天平秤,3次怎么找出次品
求解:有12个球,其中一个为次品,重量不一样,如何用一个天平称三次吧他找出来?
12个小球其中有一个是次品,不过不知道轻重,请问用天平能用三次测量的机会找出那个次品吗?
有12个球,其中一个球质量与其他的11个球不一样,但不知道是轻了还是重了,要求用一架天平称三次找出次品,该怎么办?
现在有9个小球,其中有一个是次品,若次品比正品重一点,利用一架天平,最少称几次一定能把次品找到?