复变函数零点和极点有什么关系?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:20:49
复变函数零点和极点有什么关系?
有个题它说0是分母的三级零点,不是分子的零点,所以0是函数的三级极点.为什么这么说呢 如果说0是分母的三级零点,而且是分子的一级零点,那么0是函数的几级极点?零点和极点有什么关系呢
有个题它说0是分母的三级零点,不是分子的零点,所以0是函数的三级极点.为什么这么说呢 如果说0是分母的三级零点,而且是分子的一级零点,那么0是函数的几级极点?零点和极点有什么关系呢
当0是分母的三级零点,不是分子的零点时,0是函数的三级极点.这是极点的定义.
当0是分母的三级零点,而且是分子的一级零点,那么0是函数的二级极点.这是结合极点与可去齐点的定义而得到的.
零点和极点有什么关系直接看复变函数书上就有的.有知你用的是哪本书.
再问: 复变函数与拉普拉斯变换(第三版) 金忆丹 有人这样说你看看到底对不对呢 ?我对比书上的例子,用他这方法弄出来结果不对啊 1。 判断零点 在零点, 如果第一次求导就得常数0那么就是一阶的 第二次求导得到常数0那么就是二阶的。 后面的类似。第n次求导得到常数0那么就是n阶。 2。判断极点 就是看使分母为零的数, 比如 sinz/z这道题0就是他的极点
再答: 1。思想好象对,但说的不准确!应该说成:在零点,如果一阶导就值也是0但二阶导数值不是0,那么就是一阶零点;如果一阶、二阶导数都是0但三阶导数不是0,就是三阶零点;依此类推。 2。说法也不准确!正确的应该是:使分母为0的自变量是函数的奇点。是否为极点还得另行判别。 孤立奇点分三类:可去奇点、极点、本性奇点。从它们的定义及其与零点的关系可以判别。 sinz/z的z=0是可去奇点,不是极点!因为z→0时,limsinz/z=1,所以可去。或sinz/z的洛朗展开式中没有z的负幂项,从而不是极点也不是本性奇点。
当0是分母的三级零点,而且是分子的一级零点,那么0是函数的二级极点.这是结合极点与可去齐点的定义而得到的.
零点和极点有什么关系直接看复变函数书上就有的.有知你用的是哪本书.
再问: 复变函数与拉普拉斯变换(第三版) 金忆丹 有人这样说你看看到底对不对呢 ?我对比书上的例子,用他这方法弄出来结果不对啊 1。 判断零点 在零点, 如果第一次求导就得常数0那么就是一阶的 第二次求导得到常数0那么就是二阶的。 后面的类似。第n次求导得到常数0那么就是n阶。 2。判断极点 就是看使分母为零的数, 比如 sinz/z这道题0就是他的极点
再答: 1。思想好象对,但说的不准确!应该说成:在零点,如果一阶导就值也是0但二阶导数值不是0,那么就是一阶零点;如果一阶、二阶导数都是0但三阶导数不是0,就是三阶零点;依此类推。 2。说法也不准确!正确的应该是:使分母为0的自变量是函数的奇点。是否为极点还得另行判别。 孤立奇点分三类:可去奇点、极点、本性奇点。从它们的定义及其与零点的关系可以判别。 sinz/z的z=0是可去奇点,不是极点!因为z→0时,limsinz/z=1,所以可去。或sinz/z的洛朗展开式中没有z的负幂项,从而不是极点也不是本性奇点。
复变函数零点和极点有什么关系?
复变函数请问零点为什么这样定义,给我用文字直白说一下零点到底是什么.给我举例说说零点有什么作用.极点又为什么这样定义,给
函数的零点和极值点有什么关系?
导数的零点个数和函数的零点个数有什么关系?
复变函数f(z)=z^4/z-i的零点和极点怎么做?以及在z=i处得留数,
全通滤波器的极点和零点是互为什么关系
复变函数,sin(z)的零点是几阶零点
焓变和反应热有什么关系
滤波器的极点和零点是什么意思
方程和函数有什么关系关系
数学函数的零点的概念1.如何求函数的零点2.如何判断二次函数零点的个数3.方程、函数的零点、图像三者之间有什么关系4.y
怎么判断是复变函数极点或者零点是几级