作业帮 > 数学 > 作业

已知x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:23:46
已知x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.
1.是否存在实数k,使(2x1-x2)(x1-2x)=-3/2成立?若存在,求k;若不存在,说明理由.
2.求使x1/x2+x2/x1-2值为整数的实数k的整数值;
3.若k=-2,e=x1/x2,求e的值.
已知x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.
x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.
则:x1+x2=-(-4k)/4k=1
x1x2=(k+1)/4k
1)
(2x1-x2)(x1-2x)=2x1^2+2x2^2-5x1x2=2(x1+x2)^2-9x1x2=2-9(k+1)/4k=-3/2
9(k+1)/4k=7/2
9(k+1)=14k
k=9/5
2)
x1/x2+x2/x1-2
=(x1^2+x2^2)/x1x2-2
=(x1+x2)^2/x1x2-4
=4k/(k+1)-4
=-4/(k+1)为整数
则:k=3,1,0,-2,-3,-5
3)
k=-2,方程化为:-8x^2+8x-1=0
8x^2-8x+1=0
x1,2=(2±√2)/4
x1/x2=(2+√2)/(2-√2)=(2+√2)^2/2=3+2√2,或
x1/x2=(2-√2)/(2+√2)=(2-√2)^2/2=3-2√2,