任意一个椭圆,若X属于(-c,c)时,椭圆上任意一点的切线,并过切点做切线的垂线总平分切点到俩焦点所成...
任意一个椭圆,若X属于(-c,c)时,椭圆上任意一点的切线,并过切点做切线的垂线总平分切点到俩焦点所成...
过椭圆外一点做椭圆的切线,有没有和它垂直的?比如和切点与焦点连线垂直之类的?
一道圆锥曲线的题已知抛物线C:y=(1/4)x^2的准线为l,过l上任意一点M做抛物线C的两条切线l1,l2,切点分别为
求证,定圆外一定直线上的任意一点与圆的的切线的切点的连线必经过圆心与直线的垂线
求过一点(1,-1)的曲线,使其上任意一点处的切线夹于两坐标轴向的线段被切点平分
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
过椭圆C:x^2/8+y^2/4=1上的一点P(a,b)向圆O:x^2+y^2=4引两条切线PA、PB,A、B为切点,直
曲线上任意一点的切线介于两坐标轴的部分恰为切点所平分,这个条件的微分方程还怎么列啊?
如图所示,过圆O:x^2+y^2=4与y轴正半轴的交点A做圆的切线l.M为l上任意一点,通过M做圆的另一切线,切点为Q,
已知点f是抛物线C:x2=y的焦点,点p(m,n)是抛物线下方的任意一点,过点p作抛物线的两条切线,切点为a,
已知曲线y=y(x)通过点(2,3),该曲线上任意一点处的切线被两坐标轴所截的线段均被切点所平分
椭圆C:x^2/3+y^2=1,过圆d:x^2+y^2=4上任意一点P作椭圆的两条切线m,n,求证M⊥n