过椭圆C:x方/4+y方/2=1的左顶点A作两条互相垂直的直线,分别交椭圆于P.Q两点,问直线P.Q是否过x轴上一定点,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:23:26
过椭圆C:x方/4+y方/2=1的左顶点A作两条互相垂直的直线,分别交椭圆于P.Q两点,问直线P.Q是否过x轴上一定点,求出这个点,再求三角形APQ的面积最大值,
x^2/4+y^2/2=1
左顶点A(-2,0)
直线分别为y=k(x+2) and y=-1/k(x+2)
交椭圆于k^2(x+2)^2/2+x^2/4=1
-->2k^2(x+2)^2+(x-2)(x+2)=0
-->2k^2(x+2)+x-2=0
-->x1=(2-4k^2)/(2k^2+1)
y1=4k/(2k^2+1)
x2=同理有=(2-4(-1/k)^2)/(2(-1/k)^2+1)
=(2k^2-4)/(k^2+2)
y2=-4k/(k^2+2)
x轴上一定点M:(t,0)
MP=λMQ
-->MP=((2-4k^2)/(2k^2+1)-t,4k/(2k^2+1))
MQ=(2k^2-4)/(k^2+2)-t,-4k/(k^2+2))
-->y1/y2=(x1-t)/(x2-t)
-->(-2k^2-2)/(k^2+2)(2k^2+1)=(3k^2+3)/(k^2+2)(2k^2+1)t
-->t=-2/3 过定点:(-2/3,0)
S=SΔMAP+SΔMAQ
=0.5(2-2/3)|y1-y2|
=0.5*4/3*(4k/(2k^2+1)+4k/(k^2+2))
=2/3*(4k(3k^2+3)/(2k^2+1)(k^2+2))
=8k(k^2+1)/(2k^2+1)(k^2+2)
求导可得取得最大值时,
-16k^6-8k^4+8k^2+2=0
-->k^2=1 -->k=1
S=8*2/3*3=16/9
打得我累死了,才做出来,请后面来的人不要抄袭啊.
左顶点A(-2,0)
直线分别为y=k(x+2) and y=-1/k(x+2)
交椭圆于k^2(x+2)^2/2+x^2/4=1
-->2k^2(x+2)^2+(x-2)(x+2)=0
-->2k^2(x+2)+x-2=0
-->x1=(2-4k^2)/(2k^2+1)
y1=4k/(2k^2+1)
x2=同理有=(2-4(-1/k)^2)/(2(-1/k)^2+1)
=(2k^2-4)/(k^2+2)
y2=-4k/(k^2+2)
x轴上一定点M:(t,0)
MP=λMQ
-->MP=((2-4k^2)/(2k^2+1)-t,4k/(2k^2+1))
MQ=(2k^2-4)/(k^2+2)-t,-4k/(k^2+2))
-->y1/y2=(x1-t)/(x2-t)
-->(-2k^2-2)/(k^2+2)(2k^2+1)=(3k^2+3)/(k^2+2)(2k^2+1)t
-->t=-2/3 过定点:(-2/3,0)
S=SΔMAP+SΔMAQ
=0.5(2-2/3)|y1-y2|
=0.5*4/3*(4k/(2k^2+1)+4k/(k^2+2))
=2/3*(4k(3k^2+3)/(2k^2+1)(k^2+2))
=8k(k^2+1)/(2k^2+1)(k^2+2)
求导可得取得最大值时,
-16k^6-8k^4+8k^2+2=0
-->k^2=1 -->k=1
S=8*2/3*3=16/9
打得我累死了,才做出来,请后面来的人不要抄袭啊.
过椭圆C:x方/4+y方/2=1的左顶点A作两条互相垂直的直线,分别交椭圆于P.Q两点,问直线P.Q是否过x轴上一定点,
已知椭圆X方/A方+Y方/B方=1的左右顶点上分别是A、B,右焦点是F,过F点作直线与长轴垂直,与椭圆交于P、Q两
已知椭圆四分之x方+二分之y方=1,点A、B分别是它的左右定点,一条垂直于与x轴的动直线L与椭圆交于P、Q两点
已知椭圆x^2/4+y^2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点,问MN是否恒过x轴上定点
已知椭圆(x^2)/2+y^2=1及定点P(1,0).过点P的直线l交椭圆于A,B两点,交Y轴于点P,Q,若P,Q在线段
椭圆x^2/4+y^2/3=1的左焦点为F,上顶点为A,过点A作直线AF的垂线分别交椭圆,x轴于B、C两点
直线L过点M(1,1),与椭圆x^2/16+y^2/4=1交于P,Q两点,已知线段PQ的中点横坐标为1/2,求直线L的方
椭圆离心率及方程设椭圆x^/a^+y^/b^=1的左焦点为F,上顶点为A,过A与AF垂直的直线分别交椭圆和X轴正半轴于P
Y已知椭圆方程为y^2/2+x^2=1 ,斜率为k的直线l 过椭圆的上焦点且与椭圆交于点P ,Q两点,线段PQ的垂直平分
椭圆的中心是坐标原点,焦点在X轴上,过椭圆左焦点的直线交椭圆于P、Q两点……
过原点的直线l交椭圆于x方/a方+y方/b=1于点A,B,P为椭圆上一点,设PA,PB的斜率分别为k1,k2
设椭圆x^2/a^2+y^2/b^2的左,右焦点分别为f1.f2.上顶点为a,过点a与f2垂直的直线交x轴负半轴,于点q