∫(x+y²)dx+(x²-y²)dy,已知,A(1,1),B(3,2),C(3,5),用
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 20:11:00
∫(x+y²)dx+(x²-y²)dy,已知,A(1,1),B(3,2),C(3,5),用格林公式求曲线积分
∫(x+y²)dx+(x²-y²)dy,L为ABC三角形边界,A(1,1),B(3,2),C(3,5),用格林公式求曲线积分
∫(x+y²)dx+(x²-y²)dy,L为ABC三角形边界,A(1,1),B(3,2),C(3,5),用格林公式求曲线积分
经过AB的直线:y = x/2 + 1/2
经过BD的直线:x = 3
经过CA的直线:y = 2x - 1
设P = x + y²、∂P/∂y = 2y
设Q = x² - y²、∂Q/²x = 2x
于是∮ (x + y²)dx + (x² - y²)dy
= 2∫∫ (x - y) dxdy
= 2∫(1 → 3) ∫(x/2 + 1/2 → 2x - 1) (x - y) dydx
= 2∫(1 → 3) [xy - y²/2]:(x/2 + 1/2 → 2x - 1) dx
= 2∫(1 → 3) {[x(2x - 1) - (2x - 1)²/2] - [x(x/2 + 1/2) - (x/2 + 1/2)²/2]} dx
= 2∫(1 → 3) (- 3/8)(x - 1)² dx
= (- 3/4) * (x - 1)³/3 :(1 → 3)
= (- 1/4) * (8 - 0)
= - 2
经过BD的直线:x = 3
经过CA的直线:y = 2x - 1
设P = x + y²、∂P/∂y = 2y
设Q = x² - y²、∂Q/²x = 2x
于是∮ (x + y²)dx + (x² - y²)dy
= 2∫∫ (x - y) dxdy
= 2∫(1 → 3) ∫(x/2 + 1/2 → 2x - 1) (x - y) dydx
= 2∫(1 → 3) [xy - y²/2]:(x/2 + 1/2 → 2x - 1) dx
= 2∫(1 → 3) {[x(2x - 1) - (2x - 1)²/2] - [x(x/2 + 1/2) - (x/2 + 1/2)²/2]} dx
= 2∫(1 → 3) (- 3/8)(x - 1)² dx
= (- 3/4) * (x - 1)³/3 :(1 → 3)
= (- 1/4) * (8 - 0)
= - 2
∫(x+y²)dx+(x²-y²)dy,已知,A(1,1),B(3,2),C(3,5),用
y=1+xe^y,求dy/dx.参数方程x=e^-t,y=3t,求dy/dx.求∫1/x+x².
1、设y=x+Inx,则dx/dy=() A、(x+1)/x B、(y+1)/y C、x/(x+1) D、y/(y+1)
已知函数y=x(x-1)(x-2)(x-3)求导数值dy/dx ,
已知dx/dy=1/y’ 求d²x/dy²
已知dx/dy=1/y',求证1、d^2x/dy^2=-y''/(y')^3.2、d^3x/dy^3=[3(y'')^2
dy/dx-2y/(1+x)=(x+1)^3
设设C是点A(1,1)到点B(2,3)的直线段,计算对坐标的曲线积分∫C(x-y)dx+(x+y)dy
从(dx)/(dy)=1/y '导出:(d^2x)/(dy^2)=-y''/(y')^3
下列函数是奇函数的是( ) A,y=x B,y=2x²-3 C,y=x Dy=x²,x∈[0,1]
matlab中如何表示dy/dx=y/A式并求A?x=1:2:10 y=x.^3 dy/dx=y/A
2*x*y^2(dy/dx)- x^3(dy/dx)=2y^3