D是△ABC的边BC上一点,过D点的直线交AC于Q,交AB延长线于P,AE‖BC,交Q于E,PD:PE=DQ:QE.求证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:38:09
D是△ABC的边BC上一点,过D点的直线交AC于Q,交AB延长线于P,AE‖BC,交Q于E,PD:PE=DQ:QE.求证:(1)D是的BC中点.(2)QA:PB=PA:QC 急
证明:1)因为AE//BC
所以在相似△PBD和△PAE中,BD:AE=PD:PE=DQ:QE
因为AE//BC
所以在相似△QCD和△QAE中,DQ:QE=CD:AE
故BD:AE=CD:AE
得BD =CD ,从而D是BC的中点.
2)因为AE//BC
所以在相似△PBD和△PAE中有,PA*PB=AE*BD
由1)可知BD=CD,故PA*PB=AE*CD
因为在相似△QCD和△QAE中有,AE*CD=QA*QC
故PA*PB=QA*QC,即QA:PB=PA:QC .得证.
所以在相似△PBD和△PAE中,BD:AE=PD:PE=DQ:QE
因为AE//BC
所以在相似△QCD和△QAE中,DQ:QE=CD:AE
故BD:AE=CD:AE
得BD =CD ,从而D是BC的中点.
2)因为AE//BC
所以在相似△PBD和△PAE中有,PA*PB=AE*BD
由1)可知BD=CD,故PA*PB=AE*CD
因为在相似△QCD和△QAE中有,AE*CD=QA*QC
故PA*PB=QA*QC,即QA:PB=PA:QC .得证.
D是△ABC的边BC上一点,过D点的直线交AC于Q,交AB延长线于P,AE‖BC,交Q于E,PD:PE=DQ:QE.求证
已知D是三角形ABC的边BC上的一点,过D点的直线交AC于D,交AB延长线于P,AE平行于BC,交PQ于E,PD比PE=
已知过△ABC的底边BC的中点D任作一条直线交AC于Q,交AB的延长线于P,作AE∥BC交DQ的延长线于E.
D是等边三角形ABC边AC上一点,延长AB到E,使BE=CD,连接DE交BC于点P.求证:PD=PE
D是等边三角形ABC边AC上一点,延长AB到E,使BE=CD连接DE交BC于点P,求证:PD=PE
在 正△ABC中P是AB边上一点且PB=2PA,过点P作PE垂直AB,交AC于点E,过点P作PD垂直BC于点D,求证PD
如图,在三角形ABC中,点D是边AC上的中点,过D的直线交AB于E,交BC的延长线于点F,求证:AE:EB=CF:BF
如图,在△ABC中,AB>AC,边AB上取一点D,边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证:
如图,在△ABC中,D是AB的中点,过点D的直线交边AC于点E,交BC的延长线于点F,求证:BF:CF=AE:EC
如图,在等边三角形ABC的边AB上取一点P,使PB=2PA,过P分别作PD⊥BC于D,PE⊥AB且交AC于E,求证:PD
如图,点D是△ABC的边AC的中点,过D的直线交AB于点E,交BC的延长线于F,求证:AE/EB=CF/BF
点D是△ABC的边AC的中点,过D的直线交AB于点E,交BC的延长线于F,求证:AE/EB=CF/BF