作业帮 > 数学 > 作业

△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 21:56:55
△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明理由.
△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,
DE=DF,理由如下:
连接AD,因为∠A=90°,AB=AC,D为BC中点,
∴CD=AD,∠C=∠DAF=45°,AD⊥CD,
∴∠CED+∠EDA=∠ADF+∠EDA=90°,
∴∠CDE=∠ADF,
在△CDE和△ADF中,

∠C=∠DAF
CD=AD
∠CDE=∠ADF,
∴△CDE≌△ADF(ASA),
∴DE=DF.