已知椭圆C1与抛物线C2的焦点均在x轴上,C1的中心及C2的顶点均为原点,C1过A(—2,0),B(√2 ,√2/2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:07:30
已知椭圆C1与抛物线C2的焦点均在x轴上,C1的中心及C2的顶点均为原点,C1过A(—2,0),B(√2 ,√2/2) ,C2过点C(4 ,—4).
求曲线C1 ,C2 的标准方程;
求曲线C1 ,C2 的标准方程;
已知椭圆C1的焦点在x轴上,C1的中心及C2的顶点均为原点,C1过A(—2,0)
则a=2
设椭圆方程为:x^2/4+y^2/b^2=1
经过点B(√2 ,√2/2) 代入
则 2/4+1/2b^2=1 解得,b^2=1
所以 曲线C1的标准方程; x^2/4+y^2=1
抛物线C2的焦点在x轴上,设方程为y^2=mx
C2过点C(4 ,—4).代入
16=4m
m=4
曲线C2的标准方程;y^2=4x
再问: 设直线l过抛物线C2的焦点F,l与椭圆交于不同的两点M.N当向量OM垂直于向量ON时,求直线l的方程。
则a=2
设椭圆方程为:x^2/4+y^2/b^2=1
经过点B(√2 ,√2/2) 代入
则 2/4+1/2b^2=1 解得,b^2=1
所以 曲线C1的标准方程; x^2/4+y^2=1
抛物线C2的焦点在x轴上,设方程为y^2=mx
C2过点C(4 ,—4).代入
16=4m
m=4
曲线C2的标准方程;y^2=4x
再问: 设直线l过抛物线C2的焦点F,l与椭圆交于不同的两点M.N当向量OM垂直于向量ON时,求直线l的方程。
已知椭圆C1与抛物线C2的焦点均在x轴上,C1的中心及C2的顶点均为原点,C1过A(—2,0),B(√2 ,√2/2)
已知椭圆C1,抛物线C2的焦点均在x轴上,c1的中心和C2的顶点均为原点0,从每条曲线上各取两个点,将其坐标记录与下表中
已知椭圆C1中心在原点,焦点在x轴上,离心率为√2/2,且过点(√2,0),等轴双曲线C2的渐进线与直线l平行,直线l过
已知椭圆C1与抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2
设椭圆C1的中心在原点,其右焦点与抛物线C2:y^2=4x的焦点F重合,过F与x轴垂直的直线与C交于A、B两点,与C2交
已知抛物线c1:y=ax*2-4ax+4a+5(a大于0)的顶点为A,抛物线c2的顶点B在y轴上,且抛物线c1和c2关于
已知双曲线C1的中心为坐标原点,且与椭圆C2:x^2/16+y^2/8=1有相同的焦点,若双曲线C1
已知直线l的方程y=mx+m^2,抛物线C1的顶点和椭圆C2的中心都在坐标原点,且它们的焦点均在y轴上,
已知对称中心为坐标原点的椭圆C1与抛物线C2:x^2=4y有一个相同的焦点F1,直...
求解抛物线的题已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都有坐标原点,过点M(4,0)的直线
已知对称中心为原点的椭圆C1与抛物线C2:x²=4y有一个相同的焦点F1,直线l:y=2x+m与抛物线C2只有
已知双曲线c1:x^2/a^2-y^2/2a^2=1(a>1),抛物线c2的顶点在原点O,且c2的焦点是c1的右焦点.