(1-x)分之e的x次方的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:08:29
我想LZ的意思是求不定积分:∫(e^x)/(1+e^2x)dx=∫1/(1+e^2x)d(e^x)然后用第二类换元法,令e^x=tant,则t=arctan(e^x)代入可得:∫1/(1+e^2x)d
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
积分符号我用f代替了令t=根号(1+e^x)那么x=In(t^2-1)所以dx=dIn(t^2-1)=2t/(t^2-1)dt那么原积分可以写成f2dt/(t^2-1)=2f1/t^2-1dt=ln{
4/[(e^x)+1]=4[(1+e^x)^(-1)]{4/[(e^x)+1]}']={4[(1+e^x)^(-1)]}'=4[(-1)(1+e^x)^(-2)](1+e^x)'=-4(e^x)/(1
∫xe^(-x)dx=-∫xe^(-x)d(-x)=-(xe^(-x)-∫e^(-x)dx)=-(xe^(-x)+∫e^(-x)d(-x))=-(xe^(-x)+e^(-x)+C)=-xe^(-x)-
再问:�����
∫x^2*e^(x^2)dx和∫x^2*e^(-x^2)dx,不定积分均无法用初等函数表示,但∫x^2*e^(-x^2)dx在[0,+∞)上的定积分可求出∫(0→+∞)x^2*e^(-x^2)dx=∫
你可以把根号下(e^x-1)/(e^x+1)等于t试试,我没细做,但应该可行
∫e^(-2x)dx=-1/2∫e^(-2x)d(-2x)=-1/2∫de^(-2x)=-e^(-2x)/2+C
∫e^√xdx令u=√x,x=u^2,dx=2udu原式=2∫u*e^udu=2∫ud(e^u)=2(u*e^u-∫e^udu),分部积分法=2u*e^u-2*e^u+C=2e^u*(u-1)+C=2
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
∫x^2e^(-x)dx=-∫x^2d[e^(-x)]=-x^2e^(-x)+∫e^(-x)dx^2=-x^2e^(-x)+∫2xe^(-x)dx=-x^2e^(-x)-2∫xd[e^(-x)]=-x
e^(x^2/2)的原函数不是初等函数.用刘维尔第三定理即可证明.用正态分布的概率分布函数积分=1其中=0,方差=1带入然后进行化简就可以了
=e^xsinx-∫e^xcosxdx=e^xsinx-∫cosxd(e^x)=e^xsinx-[e^xcosx-∫e^xd(cosx)]=e^xsinx-(e^xcosx∫e^xsinxdx)=e^
上下乘e^x原式=∫上限1,下限0(e^x/(e^2x+1)dx=∫上限1,下限0(de^x/(e^2x+1)=arctan(e^x)限1,下限0=arctane-π/4
=∫[0,π/2]sinxdx+∫[0,π/2]e^(-2x)dx=1+1/2(1-e^(-π))=(3-e^(-π))/2
由题意可得:∫[(e^x-1)^5*](e^x)dx=∫(e^x-1)^5d(e^x-1)=[(e^x-1)^6]/6+C又积分上限为1,下限为0,代入可得:∫[(e^x-1)^5*](e^x)dx=
I=∫xe^(-x^2)dx=1/2∫e^(-x^2)dx^2(t替换x^2)=1/2∫e^(-t)dt=-1/2e^(-t)(x^2替换t)=-1/2e^(-x^2)希望采纳
该积分为常数,所以其导数为0再问:能否写出详细步骤。谢谢再答:不需要步骤啊,这是根据定积分和导数的定义、性质确定的