(1-lnx) (1 lnx)^2的原函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:38:54
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
∫(lnx-1)/x²dx=-∫(lnx-1)d(1/x)=-[(lnx-1)/x-∫1/xd(lnx-1)]=-(lnx-1)/x+∫1/x²dx=-(lnx-1)/x-1/x+
原式=[(-a)+(-6b)]²=(-a)²+2(-a)(-6b)+(-6b)²=a²+12ab+36b²原式=[-1×(a+6b)]²=(
分母是1+x^2,分子是Lnx,积分就没有显式 .
1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x
S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+
方法是先将下方的x放到上面得到dlnx,然后通过+1,-1分开算出得数∫lnx/(x*根号下1+lnx)dx=∫lnx/√(1+lnx)dlnx=∫√(1+lnx)dlnx-∫1/√(1+lnx)dl
y=(lnx)^x则lny=xln(lnx)两边求导y'/y=ln(lnx)+x*(1/lnx)*(1/x)即y'/y=ln(lnx)+1/lnx所以y'=y*[ln(lnx)+1/lnx]=(lnx
y=lnx/(x^2+1)y'=[(1/x)*(x^2+1)-lnx*(2x)]/(x^2+1)^2=[x+1/x-2x*lnx]/(x^2+1)^2
∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
y=1+(lnx)²y'=1'+[(lnx)²]'=0+2lnx×(lnx)'=2lnx×(1/x)=2(lnx)/x
采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(
d(xlnx)=(1+lnx)dx所以原式=∫(1+lnx)/(xlnx)^2dx=∫(1+lnx)/(1+lnx)(xlnx)^2d(xlnx)=∫1/(xlnx)^2d(xlnx)=-1/xlnx
∫[ln(lnx)+1/lnx]*dx=∫ln(lnx)*dx+∫1/lnx*dx=xln(lnx)-∫x*d(ln(lnx))+∫1/lnx*dx=xln(lnx)-∫x*1/lnx*1/x*dx+
上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出