一个交错级数条件收敛 那么u2n收敛么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:10:02
我给楼主举个例子:1,-1,1/2,-1/4,1/3,-1/9.1/n,-1/n²...楼主自己验证下是否收敛.给出第一个条件就能通过单调有界来证明级数收敛
首先由和差化积应该知道(-1)^nsin(π√(n²+1)-nπ)=(-1)^nsin(π√(n²+1))*cosnπ=(-1)^(2n)*sin(π√(n²+1))=s
不是.莱布尼茨判别法:若交错级数满足下述两个条件:(1)交错级数的数列收敛(2)该数列的极限为0
根据交错级数莱布尼兹判别法,这个级数的一般项的绝对值趋于0,并且一般项的绝对值是单调递减的,故这个交错级数是收敛的以下是莱布尼兹定理的介绍 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收
①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的
若交错级数收敛但取绝对值后级数发散,那么该交错级数就是条件收敛的.条件收敛的定义就是收敛而不绝对收敛.但是去掉原级数收敛的条件后结论不成立.例如a(n)=(-1)^n,取绝对值后发散但该交错级数不收敛
原级数是交错级数,由莱布尼茨判别法,原级数收敛.|【(-1)^n】×【ln(n^2+1)/n^2】|=ln(1+1/n'2)而n趋近无穷时ln(1+1/n'2)/(1/n'2)=lne=1所以ln(1
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
题目条件不完整,无法证明
一:1:逐项递减2:n趋向无穷时,此项为0根据微积分书本什么定理,所以:此交错级数收敛二:每项都取绝对值时,即1/lnlnn的敛散性由于lnlnn1/n,因为级数(求和符号)1/n发散,所以,级数(求
R=3换言之,级数∑(Anx^n)在x=3处条件收敛,则级数在(-3,3)内收敛,且绝对收敛.当|x|>3时,级数一定发散,否则由阿贝儿定理,x=3处是绝对收敛的,矛盾.所以绝对收敛域与发散域在x=±
1、错原级数的绝对值级数收敛就叫绝对收敛,若绝对值级数发散,原级数收敛,就叫做条件收敛2、对了Un发散或者limUn=C(非零常数),可以推出原级数发散不能反推
为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国
|sin(n)/(n√n)|
不行,莱布尼茨定理只是交错级数收敛的充分条件,不是必要条件.比如∑(-1)^n/√[n+(-1)^n],n从2开始取值.可以用定义证明级数收敛,但是{Un}没有单调性再问:如何证明它收敛??再答:定义
只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾
因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.
首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是
显然收敛的再问:如果没加一般项趋于0,就不一定了吧再答:也一定收敛,因为括号是任意加的
嗯,要看是不是正项级数了,如果是正项的,那么成立.如果不是正想的级数,那么该结论未必成立.比如级数-1/n收敛,偶数项或者奇数项构成的级数都发散.再答:不好意思,上面例子写错了级数,要写成交错项的…是