一个交错级数条件收敛 那么u2n收敛么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:10:02
一个交错级数条件收敛 那么u2n收敛么
高数无穷级数中的交错级数收敛第一个条件是多余的

我给楼主举个例子:1,-1,1/2,-1/4,1/3,-1/9.1/n,-1/n²...楼主自己验证下是否收敛.给出第一个条件就能通过单调有界来证明级数收敛

证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.

首先由和差化积应该知道(-1)^nsin(π√(n²+1)-nπ)=(-1)^nsin(π√(n²+1))*cosnπ=(-1)^(2n)*sin(π√(n²+1))=s

莱布尼茨定理是交错级数收敛的充要条件吗

不是.莱布尼茨判别法:若交错级数满足下述两个条件:(1)交错级数的数列收敛(2)该数列的极限为0

高等数学,交错级数收敛

根据交错级数莱布尼兹判别法,这个级数的一般项的绝对值趋于0,并且一般项的绝对值是单调递减的,故这个交错级数是收敛的以下是莱布尼兹定理的介绍 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

交错级数的敛散性问题一个交错级数如果绝对值发散,就可以判断它是条件收敛吗,如果不能,则其原函数的敛散性如何判断

若交错级数收敛但取绝对值后级数发散,那么该交错级数就是条件收敛的.条件收敛的定义就是收敛而不绝对收敛.但是去掉原级数收敛的条件后结论不成立.例如a(n)=(-1)^n,取绝对值后发散但该交错级数不收敛

高数题 证明一题(交错级数)是条件收敛还是绝对收敛

原级数是交错级数,由莱布尼茨判别法,原级数收敛.|【(-1)^n】×【ln(n^2+1)/n^2】|=ln(1+1/n'2)而n趋近无穷时ln(1+1/n'2)/(1/n'2)=lne=1所以ln(1

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

高数题 证明一题(交错级数)是条件收敛

一:1:逐项递减2:n趋向无穷时,此项为0根据微积分书本什么定理,所以:此交错级数收敛二:每项都取绝对值时,即1/lnlnn的敛散性由于lnlnn1/n,因为级数(求和符号)1/n发散,所以,级数(求

级数、条件收敛、收敛半径、高等数学

R=3换言之,级数∑(Anx^n)在x=3处条件收敛,则级数在(-3,3)内收敛,且绝对收敛.当|x|>3时,级数一定发散,否则由阿贝儿定理,x=3处是绝对收敛的,矛盾.所以绝对收敛域与发散域在x=±

1、是否只有交错级数才有绝对收敛和条件收敛?

1、错原级数的绝对值级数收敛就叫绝对收敛,若绝对值级数发散,原级数收敛,就叫做条件收敛2、对了Un发散或者limUn=C(非零常数),可以推出原级数发散不能反推

【级数求助】莱布尼茨是交错级数收敛的充分条件?

为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国

请问,如果一个交错级数不满足莱布尼茨定理,那么它一定是发散的吗?

不行,莱布尼茨定理只是交错级数收敛的充分条件,不是必要条件.比如∑(-1)^n/√[n+(-1)^n],n从2开始取值.可以用定义证明级数收敛,但是{Un}没有单调性再问:如何证明它收敛??再答:定义

一个绝对收敛级数和一个条件收敛级数的和是什么级数

只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾

一个级数ΣUn收敛,怎么证明它的奇数项ΣU2n-1也收敛?

因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.

级数:绝对收敛+条件收敛=条件收敛,为什么?

首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是

一个级数的一般项趋近于0,该级数的项任意加括号后级数收敛,那么该级数是否收敛

显然收敛的再问:如果没加一般项趋于0,就不一定了吧再答:也一定收敛,因为括号是任意加的

若一个数列的级数收敛,那么这个数列的子数列的级数是否收敛

嗯,要看是不是正项级数了,如果是正项的,那么成立.如果不是正想的级数,那么该结论未必成立.比如级数-1/n收敛,偶数项或者奇数项构成的级数都发散.再答:不好意思,上面例子写错了级数,要写成交错项的…是