△DEF是正三角形,且AD=BF=EC,求证△ABC是正三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:18:54
题错了两平行线怎么可能相交一定是BC你找平行BC的吧AE=ACAD是角分线EADCAD全等ED=DC角DEC=角DCE平行角FEC=角DCEDEC=FEC所以角分线是这么证吧我念文科没学高数啊
是的证明因为在正△ABC中所以AB=BC=AC∠A=∠B=∠C=60°又因为AD=BE=FC所以有△ADF≌△BED≌△CFE,(SAS)所以DE=EF=DF所以△DEF为正△再问:什么是正△?再答:
三棱锥D-BCE的体积等于三棱锥B-DCE因为AB⊥平面ACD,DE∥AB所以AF等于过B点做面CDE的垂线三棱锥B-CDE=面CDEXAF2x2x1/2x√3=2√3
证明:假设△ABC不等边,不妨设∠A>60°>∠B那么有:∠AED=180°-∠A-∠ADE=180°-∠A-(120°-∠BDF)=60°-∠A+∠BDF因为60°<∠A,所以∠BDF>∠AED∠A
如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题
设角ADE为角1,角BFD为角2,角CEF为角3,原理1.大边对大角原理2.两边一定,夹角越大,邻角越小(以长边为半径画圆可证)原理3.如果△ABC不等边,则一定不等腰(若等腰→设AB=AC,则AE=
∵△ABC为等边△∴AB=BC,∠B=∠C又∵AD=BE=CF∴AB-AD=BC-BE即BD=CE∴△BDE和△EFC全等∴DE=EF同理可证DE=DF∴△DEF是等边△
http://zhidao.baidu.com/question/466261225.html
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
答案:1平方厘米.看图,由几何关系可以轻松得到答案.由于E为AD中点,那么DE=(1/2)*AD,所以S(BCE)=(1/2)*S(ABC)=2平方厘米;又由于F为CE的中点,那么EF=(1/2)*C
延长EF交AB于点G因为E、F分别是线段AC,AD的中点,所以EF平行CD,即EG平行BC,又因为AD是△ABC的中线,所以ED平行AB,所以EDBG为平行四边形,所以∠DEF=∠B
反证法不妨设∠A∠B∠C中∠A最大,则BC大于其它两边(大边对大角),所以EC>BD和AF,所以∠CFE在对应的3个角中最大,所以∠C在对应的三个角中最小因为∠A在对应的三个角中最大,所以∠AFD在对
S△ABC=√3/4FB=AB-AF=1-XS△FBC/S△ABC=FB/AB=(1-X)/1=1-XS△FBC=(1-X)·S△ABCS△FBD/S△FBC=BD/BC=X/1=XS△FBD=X·S
(1)证:取CE中点P,连接FP、BP,∵F为CD的中点,∴FP∥DE,且FP=12DE.又AB∥DE,且AB=12DE.∴AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.…(2分)又
△DEF是等边三角形证明:∵等边△ABC∴AB=AC=BC,∠A=∠B=∠C∵BD=AB-AD,AF=AC-CF,AD=CF∴BD=AF∵AD=BE∴△ADF全等于△BDF∴DF=DE同理可证:△AD
再答:�����再答:��֤��再问:����ѧ����再答:����再答:�������������再问:��ģ��һ����߰��ⲻ�ᣬ����������再答:�һ�Ļ��һ�����再答:�
1、因为AB=BC=AC,且AD=BE=CF,所以AB-AD=BC-BE=AC-CF即BD=CE=AF2、因为角A=角B=角C,又AD=BE=CF,同是第1步已证明BD=CE=AF;以上三点可证明三角
是假命题.以下任一方法均可:①添加条件:AC=DF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF(S
由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x