△ABC内接于圆O,且AB>AC,∠BAC的外角平分线交圆O于E,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:56:24
△ABC内接于圆O,且AB>AC,∠BAC的外角平分线交圆O于E,
如图,三角形ABC内接于圆O,CA=CB,CD//AB且与OA的延长线交于点D (1)判断CD...

(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3

如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

这就是弦切角=圆周角呀过CO作直径,交圆周于POC垂直CE. ∠ECD+∠DCP=90°直径的圆周角∠CDP=90°,所以 ∠P+∠DCP=90°∠ECD =∠P圆周角同弧上的圆周

与圆有关,证明边等如图所示,△ABC内接于圆O,AB是直径,D在圆O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

连接OC.因CE为圆O的切线,故OC⊥CE.已知AE⊥CE,则OC‖AE,得∠DAC=∠ACO.因OC=OA,故∠CAO=∠ACO.已证∠DAC=∠ACO,得∠DAC=∠CAB,则:弧DC=弧BC(同

如图所示,△ABC内接于圆O,且∠ABC=∠C,点D在弧BC上运动.过点D作DE//BC,DE交直线AB于点E,连结BD

(看楼1的看不懂,我的易看,写的多,只因我写的全,其实也很简单,第3问:连接AO并延长,交BC于F点(你画画)连接BO因为AB=AC所以AF是BC的垂直平分线(垂直平分线上的点,到线段两边相等)所以△

如图,已知△ABC是圆O的内接三角形,AD⊥BC于点D,且AC=5.DC=3,AB=4倍的根号二,则圆O

连接OA,OC∵AB=5,CD=3∴AD=4∵AB=4√2∴∠ABC=45°∴∠AOC=90°∵OA=OC,AC=5∴OC=(5/2)√2即⊙O的半径为(5/2)√2

如图,三角形ABC内接于圆O,弦AD垂直AB交BC于点E,过点B作圆O的切线交DA的延长线于点F,且角ABF=角ABC.

(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF

如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P

连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4

△ABC内接于圆O,CA=CB,CD∥AB且与OA的延长线交于点D

(1)CD与⊙O相切;证明:连接OC,∵CA=CB,∴AC^=CB^∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,∴CD与⊙O相切.(2)∵CA=CB,∠ACB=120°,∴∠DOC=60°

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

△ABC内接于圆o,AB=AC,点D在圆o上,AD⊥AB于点A,AD与BC交与点E,点F在DA的延长线,AF=AE

(1)由AD⊥AB可知BD是圆O的直径下证BF⊥BD即可因为AE=AF且AB⊥EF所以∠ABF=∠ABC=∠C=∠D所以∠DBF=∠ABF+∠ABD=∠D+∠ABD=90°所以BF是圆O切线(2)由(

已知圆O的半径为1.锐角三角形ABC内接于圆O,BD垂直于AC于点D,OM垂直AB于点M,且OM=0.2 ,则sin∠C

连结OAOB易证△AOM≌△BOM∠AOM=∠BOM则∠ACB=1/2∠AOB=∠B0M又∠CDB=∠OMB故△CDB∽△OMB故sin∠CBD=sin∠OBM=OM/OB=0.2

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,

且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

已知:如图,△ABC内接于圆O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连结AD,AM

证明:连接AF,∵BF=AC,∴弧AB+弧AF=弧AF+弧CF.∴弧AB=弧CF.∴∠F=∠FBC.又∵∠CAM=∠CBM,∴∠F=∠MAN.∵∠AMF=∠NMA,∴△AMF∽△NMA.∴AM/NM=

如图,△ABC是⊙O的内接三角形且AB=AC,BD是⊙O的直径.过点A做AP‖BC交DB的延长线于点P,连接AD.

①∵∠ABD=∠PAD{弦切角等于同弧上的圆周角},∠ADO=∠OAD{等边对等角};故∠PAO=∠ABD+∠ADO=180º-90º{直径上的圆周角是直角}=90º;∴

△ABC是圆O的内接三角形,过A的直线交圆O于P,交BC的延长线于D,AB×AB=AP×AD

(1)证明:如图、连接BP因为:AB×AB=AP×AD  所以:AB/AP=AD/AB在△ABP和△ADB中∠PAB=∠BAD(公共角)AB/AP=AD/AB∴△ABP∽△ADB【

已知等腰三角形abc内接于圆o,且顶角角A=70度,求弧AB,弧BC的度数

∵AB=AC,∠BAC=70°∠ABC=∠ACB=55°.∵∠ACB=1/2弧AB,∠BAC=1/2弧BC.弧AB=110°,弧BC=140°.

如图,△ABC内接于圆O,过点A的直线交圆O于点P ,交BC的延长线上于点D,AB2=AP×AD.1.求证AB=AC 2

由题意AB/AP=AP/AB所以三角形ABD相似于三角形APB所以∠ABD=∠APB弧AB所对的角为∠APB和∠ABC所以∠APB=∠ACB∴∠ABD=∠ACBAB=AC∠APB和∠ABC对同弦AC∴