△abc中abcshi ABC所对的边,S是该三角形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:45:41
△abc中abcshi ABC所对的边,S是该三角形的面积
在△ABC中,角ABC所对的边为abc,且满足cosA/2=2√5/5,向量AB*向量AC=3 ①求△ABC的面积 ②若

cosA=2cos²(A/2)-1=2*(4/5)-1=3/5∴siA=4/5向量AB*向量AC=cb*cosA=3∴bc=3/(3/5)=5∴S△ABC=(bc*sinA)/2=5*(4/

在△ABC中,角A,B,C所对应的边分别为a,b,c,a=23

由tanA+B2+tanC2=4得cotC2+tanC2=4∴cosC2sinC2+sinC2cosC2=4∴1sinC2cosC2=4∴sinC=12,又C∈(0,π)∴C=π6,或C=5π6由2s

一道三角函数的数学题在△ABC中,abc分别是角A、 B、 C所对的边长,若(a+b-c)*(sinA+sinB-sin

根据正弦定理,化简成(a+b+c)(a+b-c)=3ab(a+b)^2-c^2=3aba^2+b^2-c^2=ab(a^2+b^2-c^2)/2ab=1/2因为cosC=(a^2+b^2-c^2)/2

在△ABC中,a,b,c分别是角A,B,C所对的边,若acos2C2

证明:∵acos2C2+ccos2A2=3b2,∴sinA1+cosC2+sinC1+cosA2=3sinB2,即:sinA+sinAcosC+sinC+sinCcosA=3sinB,∴sinA+si

三角形ABC中 abc分别是角ABC所对的边 且acosB+bcosA=2 求c边

过顶点C作CD垂直AB于D,acosB=BDbcosA=ACAC+BD=AB=c所以c边的长就是2

在ABC中,三内角ABC所对的边分别是abc

/sinB=c/sinCsinBsinB=sin2C=2sinCcosC给你个提示!

在锐角三角形ABC中,abc分别为角ABC所对的边,且根号3a=2csinA若c=根号7,求△ABC面积的最大值

√3*a=2c*sinA,因为a/sinA=c/sinC,所以sinC=√3/2因为锐角三角形,C=60°由cosC=(a^2+b^2-c^2)/2ab,得cos60°=(a^2+b^2-(√7)^2

在△ABC中,角A B C所对的边

(1)由余弦定理可知,a^2+b^2-c^2=2abcosC  由S=(√3/4)(a^2+b^2-c^2)可得  (1/2)absinC=(√3/4)*2*abcosC  所以有sinC/cosC=

在△ABC中,角A、B、C所对的边长分别为a、b、c,

有正弦定理可得a/sinA=b/sinB=2R(R为三角形外接圆半径)所以等式两边同除以2R得sin²AsinB+sinBcos²A=sinA·根下2所以sinB(sin²

在△ABC中,角A、B、C所对的边分别为a、b、c,若1+tanAtanB

由1+tanAtanB=2cb可得1+sinAcosBcosAsinB=2cb由正弦定理可得,1+sinAcosBcosAsinB=2sinCsinB,整理可得,sinAcosB+sinBcosAsi

问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB

(1)如图1,作CB的垂直平分线分别交AB、BC于P、D,∴PC=PB,∴∠PCB=∠B=30°.∵∠ACB=90°,∴∠A=60°,∠ACP=60°,∴∠APC=∠A=∠ACP=60°,∴△ACP是

在△ABC中

解题思路:利用锐角三角函数求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

求一道数学题: △ABC 在平面直角坐标系中所放置的位置如图,试计算△ABC的面积

常规解法:将三个点引出到x轴或y轴的垂线,分别计算相关的梯形或三角形的面积,采用拼补的方式完成计算:如向x轴,则左梯形面积S1=(4+6)*(4-2)/2,右三角形面积S2=6*(8-4)/2,去除的

在△ABC中,∠ABC=

解题思路:在△ABC中,∠ABC=【如果您无法查看,请先安装公式显示控件】本题可先根据cosB的值求出AB的长,然后通过证△ABD和△DCE相似,得出关于AB,CD,BD,CE的比例关系式,即可得出关

高中三角函数=0-在三角形ABC中,角ABC所对的边分别为abc.

1.由题意得(a+c)/b=pa+c=5/4a^2+2ac+c^2=25/16ac=1/4b^2ac=1/4a^2-2ac+c^2=25/16-4ac(a-c)^2=9/16a-c=3/4a=1c=1

直角△ABC中,

∵sinB=(根号5)/5又sinB=AC/AB,AB=2倍根号5∴AC=sinB*2倍根号5=√5/5*2√5=2又(CosB)^2=1-(SinsB)^2=1-(√5/5)^2=1-1/5=4/5

在△ABC中 如果三条边的长abc成等比数列 那么他们所对角正弦sinA sinB sinC是否成等比数列 求证

由正弦定理得到a=KsinA,b=ksinB,c=ksinC,代入b^2=ac,可得(sinB)^2=sinAsinC.结论成立

如图14.1-5所示,在△ABC中,∠C>∠B,AE平分∠BAC.

由图可知,∵AD⊥BC∴∠ADE=90°=∠EAD+∠DEA∠DEA=∠B+(1/2)∠A∠C+(1/2)∠A=90°∠EAD=90°-∠DEA所以:∠EAD=∠C+(1/2)∠A-[∠B+(1/2)