△ABC中,AB=AC,DE为AB边上的垂直平分线,垂足为D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:24:58
证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.
由射影定理得三角形ADC~三角形CDB三角形DEC~三角形AED∴AC/CB=AD/DC=CD/DBAE/DE=AD/DC=DE/CE又∵三角形CDE~三角形BDC(射影定理)∴DE/CE=CD/DB
证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵D是BC的中点,∴BD=CD.在△BDE与△CDF中,∵∠DEB=∠DFC ∠B=∠C
这道题,如果把AD=AB改成,AD=BD,就对了;证明:连接CD,∵AC=BC,AD=BD,CD=CD∴△ACD≌△BCD(sss)∴∠ACD=∠BCD又∠ACD+∠BCD=∠ACB=90°∴∠ACD
证明:∵AB=AC,D为BC中点,∴∠BAD=∠CAD(等腰三角形三线合一),∵DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角的两边的距离相等).
作业的话在这上面写太浪费时间了,加我QQ,我给你语音吧?45615034
∵E为线段AC的中点且DE⊥AC(已知)∴AD=AC(中垂线性质)∵AD=ACAB=10AB=AD+BD(已知,已证)∴BD+DC=10(等量代换)∵C△BDC=BD+CD+BCBC=5(已知)∴C△
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
证明:连接AD因为AB=AC所以三角形ABC是等腰三角形因为D是BC的中点所以AD是等腰三角形ABC的中线所以AD是等腰三角形ABC的角平分线,垂线所以角BAD=1/2角BAC角ADB=90度因为角B
(1)∵AB的垂直平分线DE交AB、AC于E、D,∴DA=DB,∵△BCD的周长为8,即BC+CD+DB=8,∴BC+CD+DA=BC+CA=8,∵AC=5,∴BC=3;(2)∵DA=DB,∴∠A=∠
延长CD交AB延长线于G因为∠BAD=∠CADAD=AD∠ADG=∠ADC=90°所以△ADG≌△ACD所以CD=DG,AC=AG因为CE=BE所以得出CE:CB=CD:CG=1:2根据中位线的相关定
不变化.理由如下:∵DE∥AC,DF∥AB∴四边形AEDF为平行四边形∴DF=AE(平行四边形的对边相等)又∵AB=AC∴∠B=∠C(等边对等角)∵DE∥AC∴∠EDB=∠C∴∠EDB=∠B(等量代换
证明:因为AB=AC所以∠B=∠C所以DE平行AB所以∠B=∠CDE所以∠C=∠CDE刘为溪小朋友,哇卡卡卡啊看
在直角三角形ADC和直角三角形ADB中,AD=ADAC=AB所以直角三角形ADC全等于直角三角形ADB所以CD=BD,∠C=∠B因为DF垂直于AC,DE垂直于AB所以∠DFC=∠DEB=90度所以三角
∵∠BAC=110°,∴∠B+∠C=180°-110°=70°,∵E、G分别为AB、AC中点,DE⊥AB,FG⊥AC,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,∴∠DAF=∠BAC-
连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠
因为DB=DC所以点D为BC的中点,又因为AB=AC所以角B=角C所以三角形DEB=三角形DFC(原因是AAS)这就得出DE=DF
AD+DC+AC=21又根据题可知 △BED与△CED全等所以BD=DCAD+BD=AD+DC=12所以AC=9cm
连接AD则角ADB=90度则D为BC中点,则OD为三角形ABC中位线则OD//AC,又因为DE垂直于AC,所以DE垂直于OD,则是切线第二问和第一问差不多,仔细想一下就出来了.第三问只须证出AODE为
∵E、G分别为AB、AC中点,DE⊥AB,FG⊥AC,∴DA=DB,FA=FC,∴∠B=∠DAB,∠C=∠FAC,∵∠BAC=110°,∴∠B+∠C=180°-∠BAC=180°-110°=70°,∴