∫∫√1-x2-y2dxdy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:28:01
令x=sinu,dx=cosudu原积分=∫cosudu/sinu×cosu=∫du/sinu=∫sinudu/sin²u=-∫dcosu/(1+cosu)(1-cosu)=-½
用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的
∫(1/1+x2)'dx=1/1+x2+C这是一个纯概念题,不需要过多解释
1、原式=∫d(x^2+2x+3)/(x^2+2x+3)+2∫dx/(x^2+2x+3)=ln|x^2+2x+3|+2∫dx/[(x+1)^2+2]=ln|x^2+2x+3|+√2∫d[(x+1)/√
=(x^4-1)/(x^2+1)+1/(x^2+1)dx=x^2-1+1/(x^2+1)dx=x^3/3-x+arctanx
答:∫f(1/√x)dx=x^2+C对x求导得:f(1/√x)=2xf(1/√x)=2*(√x)^2所以:f(x)=2/x^2所以:∫f(x)dx=∫(2/x^2)dx=-2/x+C
分步积分∫ln(1+x^2)dx=x*ln(1+x^2)-∫2x^2/(1+x^2)dx对后面的进行分离=x*ln(1+x^2)-∫2dx+∫2/(1+x^2)dx直接积分=x*ln(1+x^2)-2
∫√(1+x²)dx=√(1+x²)*x-∫x*d√(1+x²)=√(1+x²)*x-∫x*x/√(1+x²)dx=√(1+x²)*x-∫(
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
换元x=tant则有=∫(sec(t)-cos(t))dt=In|sec(t)+tan(t)|-sin(t)+c
令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln
用几次换元法,过程会比较简单
你将(x+x^2)/(1+x^2)拆成两项x/(1+x^2)+x^2/(1+x^2),这时候你再用换元法做应当是比较容易的.你设x=tan(t)对于前一项就是∫tan(t)dt=-ln(cos(t))
原式=1/2∫d(2x-x^2)/√(2x-x^2)=√(2x-x^2)+C再问:能详细点吗再答:原式=1/2∫(2-2x)/√(2x-x^2)dx=1/2∫d(2x-x^2)/(2x-x^2)^(1
(-(x/(1+x^2))+ArcTan[x])/2